精英家教网 > 高中数学 > 题目详情

【题目】已知a、b、c三个实数成等差数列,则直线bx+ay+c=0与抛物线 的相交弦中点的轨迹方程是

【答案】x+1=﹣(2y﹣1)2(y≠1)
【解析】解:设直线bx+ay+c=0与抛物线 的交点坐标为A(﹣2y12 , y1),B(﹣2y22 , y2), 把x=﹣2y2代入直线方程bx+ay+c=0得:﹣2by2+ay+c=0,
∴y1y2= ,y1+y2=
∵a,b,c成等差数列,∴c=2b﹣a,
∴y1y2= = ﹣1,
设AB的中点为P(x,y),则x=﹣y12﹣y22=﹣(y1+y22+2y1y2=﹣ + ﹣2,
y= =
∴x=﹣4y2+4y﹣2,即x+1=﹣(2y﹣1)2
由△=a2+8bc=a2+8b(2b﹣a)=a2﹣8ab+16b2=(a﹣4b)2>0得a≠4b,
∴y≠1.
所以答案是:x+1=﹣(2y﹣1)2(y≠1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分)
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,AB=1,PA=2,E为PB的中点,点F在棱PC上,且PF=λPC.

(1)求直线CE与直线PD所成角的余弦值;
(2)当直线BF与平面CDE所成的角最大时,求此时λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1在平面直角坐标系中的参数方程为 (t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ﹣4sinθ
(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程
(2)求曲线C1和C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的圆锥的体积为,圆的直径,点C的中点,点D是母线PA的中点.

(1)求该圆锥的侧面积;

(2)求异面直线PBCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.
(Ⅰ)求证:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据:出生时间在晚上的男婴为24人,女婴为8人;出生时间在白天的男婴为31人,女婴为26人.

(1)将2×2列联表补充完整.

性别

出生时间

总计

晚上

白天

男婴

女婴

总计

(2)能否在犯错误的概率不超过0.1的前提下认为婴儿性别与出生时间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A﹣BCD的外接球,BC=3,AB=2 ,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2﹣a2

(2)由(1)类比可得如下真命题:双曲线C:=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值.请写出这个定值(不要求给出解题过程).

查看答案和解析>>

同步练习册答案