【题目】已知函数,,.
(1)讨论函数的单调性;
(2)若存在与函数,的图象都相切的直线,求的取值范围.
【答案】(1)答案见解析;(2).
【解析】
(1)求的定义域,导数,利用二次函数的性质分类讨论导数的正负,从而求出的单调性. (2)函数的图象上点与函数的图象上点处切线相同,利用导数求切线的斜率建立关系式,求出导数和单调区间以及最值,运用单调性计算可求出的范围.
(1)函数的定义域为,
.
,
所以当即时,,在上单调递增;
当,即或时,
方程的根为,.
当时,有,,在上单调递增;
当时,有.
+ | - | + | |
增 | 减 | 增 |
综上:当时,在上单调递增,
当时,在,上单调递增,
在上单调递减.
(2)设函数的图象上点与函数的图象上点处切线相同,
则,
即,
由得 ①
由,
得 ②
由①②得:,
设
问题转化为在有解,
则,
不妨设,
则当时,,当时,,
∴在区间上单调递减,在区间上单调递增,
∴是的最小值.
只需,即 ③
而,故代入③式,得
,
令,易得,
,则在递增.
故的解集是(0,1],即.
由,得.
即实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】如图①,在等腰梯形中,,,.,交于点.将沿线段折起,使得点在平面内的投影恰好是点,如图.
(1)若点为棱上任意一点,证明:平面平面.
(2)在棱上是否存在一点,使得三棱锥的体积为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位数为30
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、是抛物线上的两个不同的点,是坐标原点,若直线与的斜率之积为,则下列结论正确的是( )
A.
B.以为直径的圆面积的最小值为
C.直线过抛物线的焦点
D.点到直线的距离不大于
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校数学建模小组为了研究双层玻璃窗户中每层玻璃厚度(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度对保温效果的影响,利用热传导定律得到热传导量满足关系式,其中玻璃的热传导系数焦耳/(厘米·度),不流通、干燥空气的热传导系数焦耳/(厘米·度),为室内外温度差,值越小,保温效果越好,现有4种型号的双层玻璃窗户,具体数据如下表:
型号 | 每层玻璃厚度(单位:厘米) | 玻璃间夹空气层厚度(单位:厘米) |
型 | 0.4 | 3 |
型 | 0.3 | 4 |
型 | 0.5 | 3 |
型 | 0.4 | 4 |
则保温效果最好的双层玻璃的型号是( )
A.型B.型C.型D.型
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数,则下列说法正确的是( )
A.若,则的图象上存在唯一一对关于原点对称的点
B.存在实数使得的图象上存在两对关于原点对称的点
C.不存在实数使得的图象上存在两对关于轴对称的点
D.若的图象上存在关于轴对称的点,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,A1D与AD1交于点E,AA1=AD=2AB=4.
(1)证明:AE⊥平面ECD;
(2)求点C1到平面AEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在四边形中,,,,,,是上的点,,为的中点.将沿折起到的位置,使得,如图2.
(1)求证:平面平面;
(2)点在线段上,当直线与平面所成角的正弦值为时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新冠病毒疫情爆发期间,口罩成为了个人的必需品.已知某药店有4种不同类型的口罩,,,,其中型口罩仅剩1只(其余3种库存足够).今甲、乙等5人先后在该药店各购买了1只口罩,统计发现他们恰好购买了3种不同类型的口罩,则所有可能的购买方式共有( )
A.330种B.345种C.360种D.375种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com