科目:高中数学 来源: 题型:
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-6,-]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
查看答案和解析>>
科目:高中数学 来源:2012人教A版高中数学必修四3.1两角和差的正弦余弦和正切公式(五)(解析版) 题型:解答题
(2009~2010·浙江嵊泗中学高一期末)已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,- <φ<)的图象如图所示.
(1)求函数y=f(x)在上的表达式;
(2)求方程f(x)=的解.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江西省、临川一中高三8月联考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=Asin(ωx+)(其中x∈R,A>0,ω>0)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).
(1)求f(x)的解析式;
(2)若x∈[0,]求函数f(x)的值域;
(3)求函数y=f(x)的图象左移个单位后得到的函数解析式.
查看答案和解析>>
科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:填空题
已知向量p=(-cos 2x,a),q=(a,2-sin 2x),函数f(x)=p·q-5(a∈R,a≠0)
(1)求函数f(x)(x∈R)的值域;
(2)当a=2时,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图像与直线y=-1有且仅有两个不同的交点,试确定b的值(不必证明),并求函数y=f(x)的在[0,b]上单调递增区间.
查看答案和解析>>
科目:高中数学 来源:2014届吉林省高一上学期期末考试数学试卷 题型:解答题
已知函数的图象在y轴上的截距为1,它在y轴右侧的第一个最高点和最低点分别为和
(1)求函数的解析式;
(2)求函数f(x)的最小正周期和单调增区间.
(3)函数的图像由怎样变换来的
(4)若,求函数y=f(x)的最大值和最小值以及取最值时对应的x的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com