精英家教网 > 高中数学 > 题目详情
2.已知tanα=2,求sin2α-sinαcosα+2,$\frac{si{n}^{3}α-cosα}{5sinα+3cosα}$的值.

分析 切化弦,条件代入,即可求解.

解答 解:∵tanα=2,
∴sin2α-sinαcosα+2=$\frac{si{n}^{2}α-sinαcosα}{si{n}^{2}α+co{s}^{2}α}$+2=$\frac{ta{n}^{2}α-tanα}{ta{n}^{2}α+1}$+2=$\frac{4-2}{4+1}$+2=2$\frac{2}{5}$;
∵tanα=2,∴sin2α=$\frac{4}{5}$,
∴$\frac{si{n}^{3}α-cosα}{5sinα+3cosα}$=$\frac{si{n}^{2}αtanα-1}{5tanα+3}$=$\frac{\frac{4}{5}×2-1}{10+3}$=$\frac{3}{65}$.

点评 本题考查同角三角函数关系,考查学生的计算能力,正确切化弦是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x2-x+1,则当x>0,f(x)=-2x2-x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域是(  )
A.(0,+∞)B.(2,+∞)C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)在定义域R上是奇函数,且在(0,+∞)上是减函数,f(2)=0,则函数的零点是-2,0,2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x,y满足y=-x+1,则x2+y2的最小值为(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过抛物线y2=2px(p>0)的焦点的一条直线与它交于P,Q两点,过点P和此抛物线顶点的直线与准线交于点M.求证直线MQ平行于此抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=log${\;}_{\frac{1}{a}}$(2-x)在其定义域内单调递增,求函数g(x)=loga(1-x2)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M 是AB边上的点,P是平面ABC外一点.给出下列四个命题:
①若PA丄平面ABC,则三棱锥P-ABC的四个面都是直角三角形;
②若PM丄平面ABC,且M是AB边中点,则有PA=PB=PC;
③若PC=5,PC丄平面ABC,则△PCM面积的最小值为$\frac{15}{2}$;
④若PC=5,P在平面ABC上的射影是△ABC内切圆的圆心,则点P到平面ABC的距离为$\sqrt{23}$.
其中正确命题的序号是①②④. (把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,对任意x1,x2∈(0,+∞),且当x1>x2时,f(x1)-ax1>f(x2)-ax2恒成立,则实数a的取值范围是(  )
A.a>-$\frac{1}{2}$B.a<-$\frac{1}{2}$C.a≥-$\frac{1}{2}$D.a≤-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案