精英家教网 > 高中数学 > 题目详情

【题目】正三棱柱ABC﹣A1B1C1的棱长都为2,E,F,G为 AB,AA1 , A1C1的中点,则B1F 与面GEF成角的正弦值( )

A.
B.
C.
D.

【答案】A
【解析】解:取A1B1中点M,连接EM,则EM∥AA1 , EM⊥平面ABC,连接GM
∵G为A1C1的中点,棱长为
∴GM= B1C1=1,A1G═A1F=1,FG= ,FE= ,GE=
在平面EFG上作FN⊥GE,则∵△GFE是等腰三角形,∴FN=
∴SGEF= GE×FN=
SEFB1=S正方形ABB1A1﹣SA1B1F﹣SBB1E﹣SAFE=
作GH⊥A1B1 , GH=
∴V三棱锥GFEB1= SEFB1×GH=
设B1到平面EFG距离为h,则V三棱锥B1EFG= SGEF=
∵V三棱锥GFEB1=V三棱锥B1EFG

∴h=
设B1F与平面GEF成角为θ,
∵B1F=
∴sinθ= =
∴B1F与面GEF所成的角的正弦值为
故选A.

【考点精析】利用空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(6,2),B(3,2),动点M满足|MA|=2|MB|.
(1)求点M的轨迹方程;
(2)设M的轨迹与y轴的交点为P,过P作斜率为k的直线l与M的轨迹交于另一点Q,若C(1,2k+2),求△CPQ面积的最大值,并求出此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
A.l与l1 , l2都不相交
B.l与l1 , l2都相交
C.l至多与l1 , l2中的一条相交
D.l至少与l1 , l2中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点也是椭圆的一个焦点,的公共弦的长为.

(1)求的方程;

(2)过点的直线相交于两点,与相交于两点,且同向

)若,求直线的斜率

)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一简单组合体,其底面ABCD为正方形,棱PD与EC均垂直于底面ABCD,PD=2EC,N为PB的中点,求证:

(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a=2,A=45°,若此三角形有两解,则b的取值范围是(
A.(2,2
B.(2,+∞)
C.(﹣∞,2)
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anlog an , 求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案