【题目】正三棱柱ABC﹣A1B1C1的棱长都为2,E,F,G为 AB,AA1 , A1C1的中点,则B1F 与面GEF成角的正弦值( )
A.
B.
C.
D.
【答案】A
【解析】解:取A1B1中点M,连接EM,则EM∥AA1 , EM⊥平面ABC,连接GM
∵G为A1C1的中点,棱长为
∴GM= B1C1=1,A1G═A1F=1,FG= ,FE= ,GE=
在平面EFG上作FN⊥GE,则∵△GFE是等腰三角形,∴FN= ,
∴S△GEF= GE×FN= ,
S△EFB1=S正方形ABB1A1﹣S△A1B1F﹣S△BB1E﹣S△AFE= ,
作GH⊥A1B1 , GH= ,
∴V三棱锥G﹣FEB1= S△EFB1×GH= ,
设B1到平面EFG距离为h,则V三棱锥B1﹣EFG= S△GEF= ,
∵V三棱锥G﹣FEB1=V三棱锥B1﹣EFG ,
∴ ,
∴h=
设B1F与平面GEF成角为θ,
∵B1F=
∴sinθ= =
∴B1F与面GEF所成的角的正弦值为 .
故选A.
【考点精析】利用空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(6,2),B(3,2),动点M满足|MA|=2|MB|.
(1)求点M的轨迹方程;
(2)设M的轨迹与y轴的交点为P,过P作斜率为k的直线l与M的轨迹交于另一点Q,若C(1,2k+2),求△CPQ面积的最大值,并求出此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
A.l与l1 , l2都不相交
B.l与l1 , l2都相交
C.l至多与l1 , l2中的一条相交
D.l至少与l1 , l2中的一条相交
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.
(1)求的方程;
(2)过点的直线与相交于,两点,与相交于,两点,且与同向
(ⅰ)若,求直线的斜率
(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为一简单组合体,其底面ABCD为正方形,棱PD与EC均垂直于底面ABCD,PD=2EC,N为PB的中点,求证:
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anlog an , 求数列{bn}的前n项和Sn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com