精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[)时,f(x)≤g(x),求a的取值范围.
(I).(Ⅱ)的取值范围为(-1,].

试题分析:(I)当=-2时,不等式化为
设函数==

其图像如图所示,从图像可知,当且仅当时,<0,∴原不等式解集是.
(Ⅱ)当∈[)时,=,不等式化为
∈[)都成立,故,即
的取值范围为(-1,].
点评:中档题,绝对值不等式解法,通常以“去绝对值符号”为出发点。有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。不等式恒成立问题,通常利用“分离参数法”,建立不等式,确定参数的范围。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:
为常数。当万元时,万元;
万元时,万元。 (参考数据:
(1)求的解析式;
(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,若函数图象上任意一点关于原点的对称点的轨迹恰好是函数的图象.
(1)写出函数的解析式;
(2)当时总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小值是              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足:),
(1)用反证法证明:不可能为正比例函数;
(2)若,求的值,并用数学归纳法证明:对任意的,均有:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为
(1)求
(2)当时,求函数的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若不等式,求的取值范围;
(Ⅱ)若不等式的解集为R,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(I)记的表达式;
(II)是否存在,使函数在区间内的图像上存在两点,在该两点处的切线相互垂直?若存在,求的取值范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是方程的解,则属于区间    (   )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步练习册答案