精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2cos( ﹣x)sinx+(sinx+cosx)2
(1)求函数f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求 的值.

【答案】
(1)解:函数f(x)=2cos( ﹣x)sinx+(sinx+cosx)2

化简得:f(x)=2sinxsinx+1+2sinxcosx

=2sin2x+sin2x+1

=2( cos2x)+sin2x+1

= sin(2x﹣ )+2

由正弦函数的图象及性质.

可得:2x﹣ ∈[ ]是单调增区间,即 ≤2x﹣ ,k∈Z.

解得: ≤x≤

所以:函数f(x)的单调递增区间是[ ],(k∈Z)


(2)解:由(1)可得f(x)= sin(2x﹣ )+2,把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y= sin(x﹣ )+2的图象,再把得到的图象向左平移 个单位,得到g(x)= sin(x+ )+2的图象.

= sin( )+2= sin +2=3

所以 的值为:3


【解析】(1)将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;(2)根据三角函数的图象平移变换规律,求出g(x)的解析式,在求 的值.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(2x+1)定义域是[﹣1,0],则y=f(x+1)的定义域是(  )
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为
①f(x)=2x②f(x)=3x③f(x)=x3④f(x)=x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn ,若 ,且S11=143,数列{bn}的前n项和为Tn , 且满足
(1)求数列{an}的通项公式及数列 的前n项和Mn
(2)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+asinx在(﹣∞,+∞)上单调递增,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

优秀

非优秀

总计

甲班

10

乙班

30

合计

105

已知在全部105人中随机抽取一人为优秀的概率为.

(1)请完成上面的列联表

(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到1011号的概率.

参考公式和数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

Ⅰ)求点的轨迹的方程;

Ⅱ)设点,过点的直线交轨迹两点,直线的斜率分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.
(1)求证:B1F⊥EC1
(2)求二面角C1﹣BE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位员工人参加学雷锋志愿活动,按年龄分组:第,第,,,,得到的频率分布直方图如图所示.

1)下表是年龄的频率分布表,求正整数的值;

区间






人数






2)现在要从年龄较小的第组中用分层抽样的方法抽取人,年龄在第组抽取的员工的人数分别是多少?

3)在(2)的前提下,从这人中随机抽取人参加社区宣传交流活动,求至少有人年龄在第组的概率.

查看答案和解析>>

同步练习册答案