精英家教网 > 高中数学 > 题目详情
如图, 在等腰梯形ABCD中, AB//CD, 且AB="2CD," 设∠DAB=, ∈(0, ), 以A, B为焦点且过点D的双曲线的离心率为e1, 以C, D为焦点且过点A的椭圆的离心率为e2, 设
的大致图像是 (    )
  
D

试题分析:根据题意, 由于等腰梯形ABCD中, AB//CD, 且AB="2CD," 设∠DAB=, ∈(0, ),那么结合双曲线的定义,以A, B为焦点且过点D的双曲线的离心率为e1, 以C, D为焦点且过点A的椭圆的离心率为e2,BD-DA=2a,AB=2c,AD+DC=2a’,且,因为a在增大,c不变可知离心率e1增大,而对于离心率e2,不变,那么可知正确的图象为D。
点评:主要是考查了双曲线以及椭圆性质的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点到两点的距离之和等于4,设点的轨迹为,直线与轨迹交于两点.
(Ⅰ)写出轨迹的方程;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线(p>0)的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为(     )  
A.B.2C.+1D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点作圆: 的两条切线,切点为,双曲线左顶点为,若,则双曲线的渐近线方程为       (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:与椭圆共焦点,

(Ⅰ)求的值和抛物线C的准线方程;
(Ⅱ)若P为抛物线C上位于轴下方的一点,直线是抛物线C在点P处的切线,问是否存在平行于的直线与抛物线C交于不同的两点A,B,且使?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点是椭圆)的左焦点,点分别是椭圆的左顶点和上顶点,椭圆的离心率为,点轴上,且,过点作斜率为的直线与由三点,确定的圆相交于两点,满足

(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的准线过双曲线的右焦点,则双曲线的离心率为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则Mn=(  )
A.0B.C.2D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦距为4,且过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设为椭圆上一点,过点轴的垂线,垂足为。取点,连接,过点的垂线交轴于点。点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

同步练习册答案