分析 (1)设A表示“顾客买下该箱产品”,Bi(i=0,1,2)分别表示“中次品数为0件,1件,2件”,由全概率公式得:P(A)=$\sum _{i=0}^{2}$P(A|Bi)P(Bi),代入计算可得答案.
(2)由贝叶斯公式得:P(B0|A)=P(A|B0)•P(B0)÷P(A),代入可得答案.
解答 解:(1)设A表示“顾客买下该箱产品”,Bi(i=0,1,2)分别表示“中次品数为0件,1件,2件”,
则由已知可得:P(B0)=80%=$\frac{4}{5}$,P(B1)=10%=$\frac{1}{10}$,P(B2)=10%=$\frac{1}{10}$,
则P(A|B0)=1,P(A|B1)=$\frac{{C}_{19}^{4}}{{C}_{20}^{4}}$=$\frac{4}{5}$,P(A|B2)=$\frac{{C}_{18}^{4}}{{C}_{20}^{4}}$=$\frac{12}{19}$.
由全概率公式得:P(A)=$\sum _{i=0}^{2}$P(A|Bi)P(Bi)=$\frac{4}{5}$+$\frac{4}{5}$×$\frac{1}{10}$+$\frac{12}{19}$×$\frac{1}{10}$=$\frac{448}{475}$
(2)由贝叶斯公式得:P(B0|A)=P(A|B0)•P(B0)÷P(A)=$\frac{4}{5}$÷$\frac{448}{475}$=$\frac{95}{112}$
点评 本题考查的知识点是全概率公式和贝叶斯公式,是高等数学概率的拓展,难度较大.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com