精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2aln(1-x)(a∈R),g(x)=f(x)-x2+x.
(1)当a=
12
时,求函数g(x)的单调区间和极值;
(2)若f(x)在[-1,1)上是单调函数,求实数a的取值范围;
(3)若数列{an}满足a1=1,且(n+1)an+1=nan,Sn为数列{an}的前n项和,求证:当n≥2时,Sn<1+lnn.
分析:(1)利用导数来求,函数g(x)的单调增区间上导数大于0,减区间上导数小于0,极值点处导数等于0,所以只需求导,在判断导数何时等于0,何时大于0,何时小于0即可.
(2)若f(x)在[-1,1)上是单调函数,则[-1,1)必为函数某一单调区间的子区间,先带着参数a求函数的单调区间,再比较[-1,1)区间端点与函数的几个单调区间的端点大小,即可得到a的范围.
(3)先根据数列{an}递推关系式,用累乘法求出数列{an}的通项公式,再借助导数,用放缩法证明当n≥2时,Sn<1+lnn即可.
解答:解:(1)f(x)=ln(1-x)+x,定义域为(-∞,1),g′(x)=1-
1
1-x
,令g'(x)=0得x=0,
可以列表,也可以直接研究g'(x)的正负,得g(x)的单调递增区间为(-∞,0);
单调递减区间为(0,1);x=0时g(x)有极大值0.
(2)f′(x)=2x-
2a
1-x
,若f'(x)≥0,即2x-
2a
1-x
≥0
⇒a≤[x(1-x)]min⇒a≤-2,
若f'(x)≤0,即2x-
2a
1-x
≤0
⇒a≥[x(1-x)]max⇒a≥
1
4

所以a≤-2或a≥
1
4

(3)证明:由(n+1)an+1=nan,用累乘法得an=
1
n

由(1)知当x∈(0,1)时g'(x)<0又g(0)=0,得g(x)=ln(1-x)+x<g(0)=0,得x<-ln(1-x)*n≥2⇒
1
n
∈(0,1)
x=
1
n
代入*得
1
n
<ln
n
n-1
Sn=1+
1
2
+
1
3
+…+
1
n
<1+ln
2
1
+ln
3
2
+…+ln
n
n-1
=1+ln(
2
1
×
3
2
×…×
n
n-1
)=1+lnn

所以当n≥2时,Sn<1+lnn.…(14分)
点评:本题考查了应用导数求极值,单调区间,以及导数和数列的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案