精英家教网 > 高中数学 > 题目详情

【题目】若[x]表示不超过x的最大整数,则[lg2]+[lg3]+…+lg[2017]+[lg ]+[lg ]+…+[lg ]=

【答案】-2013
【解析】解:当2≤n≤9时,[lgn]=0,

当10≤n≤99时,[lgn]=1,

当100≤n≤999时,[lgn]=2,

当1000≤n≤9999时,[lgn]=3,

故[lg2]+[lg3]+…+[lg2016]+[2017]

=0×8+1×90+2×900+3×1018

=90+1800+3054

=4944;

,[lg ]=﹣1;

时,[lg ]=﹣2;

时,[lg ]=﹣3;

时,[lg ]=﹣4.

则[lg ]+[lg ]+…+[lg ]

=(﹣1)×9+(﹣2)×90+(﹣3)×900+(﹣4)×1017

=﹣6957,

故原式=4944﹣6957=﹣2013.

所以答案是:﹣2013.

【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若在定义域内存在实数x0使得f(x0+1)=f(x0)+f(1)成立则称函数f(x)有“溜点x0
(1)若函数 在(0,1)上有“溜点”,求实数m的取值范围;
(2)若函数f(x)=lg( )在(0,1)上有“溜点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为四棱锥P﹣ABCD的表面展开图,四边形ABCD为矩形, ,AD=1.已知顶点P在底面ABCD上的射影为点A,四棱锥的高为 ,则在四棱锥P﹣ABCD中,PC与平面ABCD所成角的正切值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥的表面积是(

A.2+2
B.2+
C.4+2
D.4+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.

(1)求证:MN∥BC;
(2)若M,N分别为PB,PC的中点,
①求证:PB⊥DN;
②求二面角P﹣DN﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2x≥16},B={x|log2x≥a}.
(1)当a=1时,求A∩B;
(2)若A是B的子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.

(1)证明:AD⊥CE;
(2)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年“五一节”期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:

(1)求a的值,并说明交警部门采用的是什么抽样方法?
(2)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);
(3)若该路段的车速达到或超过90km/h即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率.

查看答案和解析>>

同步练习册答案