精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|(x-2)(x-3a-2)<0},B={x|(x-1)(x-a2-2)<0},若a>0,试问:
(1)当a=1时,求A∩B;
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

分析 (1)将a=1带入A,B,解出关于A、B的不等式,取交集即可;
(2)分别求出关于A、B的不等式,根据x∈B是x∈A的必要条件,得到关于a的不等式,解出即可.

解答 解:(1)a=1时:A={x|(x-2)(x-5)<0},B={x|(x-1)(x-3)<0},
∴A={x|2<x<5},B={x|1<x<3},
因此,A∩B={x|2<x<3};
(2)由题知:B=(x|1<x<a2+2)
因为a>0,即3a+2>2,所以,A={x|2<x<3a+2}
由于命题q:x∈B是命题p:x∈A的必要条件
∴3a+2≤a2+2,又∵a>0
∴a≥3,即a∈[3,+∞).

点评 本题考查了解不等式问题,考查集合的运算以及充分必要条件,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如果函数f(x)=3sin(2x+φ)的图象关于点($\frac{π}{3}$,0)成中心对称(|φ|<$\frac{π}{2}$),那么函数f(x)图象的一条对称轴是(  )
A.x=-$\frac{π}{6}$B.x=$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设x,y,z为正实数,且x+y+z=3.求证:$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}≥\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m=10,n=20,则可以实现m、n的值互换的程序是(  )
A.m=10  n=20   n=m  m=n
B.m=10  n=20   s=m   n=s
C.m=10  n=20   s=m   m=n  n=s
D.m=10  n=20   s=m   t=n   n=s    m=n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|x2-3x<0},B={x|-2≤x≤2},则A∩B=(  )
A.{x|2≤x<3}B.{x|-2≤x<0}C.{x|0<x≤2}D.{x|-2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.记Sn为数列{an}的前项n和,已知an>0,${a_n}^2-2{S_n}=2-{a_n}$(n∈N*
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设${b_n}=\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求数列{bn}的前项n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知log2(2-x)≤log2(3x+6)
(1)解上述不等式;
(2)在(1)的条件下,求函数$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2的最大值和最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在ABCD中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{m}$=(sinA,sinB-sinC),$\overrightarrow{n}$=(a-$\sqrt{3}$b,b+c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的值;
(2)若△ABC外接圆半径为2,面积为$\sqrt{3}$且a>b,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y={(\frac{1}{3})^{\sqrt{2x-{x^2}}}}$的单调递增区间为(  )
A.(1,+∞)B.(-∞,1)C.[1,2]D.(0,1)

查看答案和解析>>

同步练习册答案