【题目】已知是椭圆的左、右顶点,为椭圆的左、右焦点,点为椭圆上一点(点在第一象限),线段与圆相切于点,且点为线段的中点.
(1)求线段的长;
(2)求椭圆的离心率;
(3)设直线交椭圆于两点(其中点在第一象限),过点作的平行线交椭圆于点,交于点,求.
【答案】(1)2b; (2); (3).
【解析】
(1)由OQ为△的中位线,直接得解;
(2)由椭圆的定义结合直角三角形的勾股数建立a,b的方程,解得a,b的关系,从而可得离心率.
(3)由(2)可知及椭圆方程可设为,(t>0),联立直线OQ的方程与椭圆方程求得M、N坐标,再联立的方程与椭圆方程得到D坐标,从而可得直线BD的方程,再与直线OQ的方程联立,解得,利用面积比转化为线段比可得结果.
(1)连接OQ,,如图,OQ为△的中位线,由题意知OQ=b,则=2b.
(2)由椭圆的定义结合(1)可得,,
则,得,解得,
则,故椭圆的离心率为.
(3)由(2)可知,设直线OQ的方程为x=2y,椭圆方程设为,(t>0),
由得25y2=,得到,,
又点作的平行线的方程设为x=2y-3t,
由得4(2y-3t)2=,即25-48ty=0,
解得y=0或y=,即D(),又B(3t,0)
∴直线BD的方程为y=,与联立,解得,
由三角形的面积公式得==.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点在抛物线: 上,直线: 与抛物线交于, 两点,且直线, 的斜率之和为-1.
(1)求和的值;
(2)若,设直线与轴交于点,延长与抛物线交于点,抛物线在点处的切线为,记直线, 与轴围成的三角形面积为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
态度 | |||
调查人群 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 | y人 |
社会人士 | 500人 | x人 | z人 |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正实数列a1,a2,…满足对于每个正整数k,均有,证明:
(Ⅰ)a1+a2≥2;
(Ⅱ)对于每个正整数n≥2,均有a1+a2+…+an≥n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数,).以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)已知曲线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD是边长为3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.
(Ⅰ)若CE∥面BDF,求PE:ED的值;
(Ⅱ)求二面角B-DF-A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体AMDCNB是由两个完全相同的四棱锥构成的几何体,这两个四棱锥的底面ABCD为正方形,,平面平面ABCD.
(1)证明:平面平面MDC.
(2)若,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com