精英家教网 > 高中数学 > 题目详情

【题目】A袋中有1个红球和1个黑球,B袋中有2个红球和1个黑球,A袋中任取1个球与B袋中任取1个球互换,这样的互换进行了一次,求:

(1)A袋中红球恰是1个的概率;

(2)A袋中红球至少是1个的概率.

【答案】(1);(2)

【解析】

将A袋中的1个红球和1个黑球分别编号为红1,黑1,B袋中的2个红球和1个黑球分别编号为红2,红3,黑2,列出基本事件空间,以及A袋中红球恰是1个得事件和)A袋中红球至少是1个的事件,利用古典概型求出各自概率.

将A袋中的1个红球和1个黑球分别编号为红1,黑1,B袋中的2个红球和1个黑球分别编号为红2,红3,黑2,则A袋中任取1个球与B袋中任取1个球的基本事件空间为{(红1,红2),(红1,红3),(红1,黑2),(黑1,红2),(黑1,红3),(黑1,黑2)},由6个基本事件组成.

(1)互换后A袋中红球恰是1个的概率P1.

(2)互换后A袋中红球至少是1个的概率P2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某书店共有韩寒的图书6种,其中价格为25元的有2种,18元的有3种,16元的有1种.书店若把这6种韩寒的图书打包出售,据统计每套的售价与每天的销售数量如下表所示:

售价x/元

105

108

110

112

销售数量y/套

40

30

25

15

(1)根据上表,利用最小二乘法得到回归直线方程,求

(2)若售价为100元,则每天销售的套数约为多少(结果保留到整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小张的投篮命中率与打篮球时间之间的关系,下表记录了小张某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:

时间

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4


(1)求小张这天的平均投篮命中率;

(2)利用所给数据求小张每天打篮球时间(单位:小时)与当天投篮命中率之间的线性回归方程;(参考公式:

(3)用线性回归分析的方法,预测小李该月号打小时篮球的投篮命中率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;

(2)若称成绩在68分以上的学生知识渊博,试以上述数据估计该高一、高二两个年级学生的知识渊博率;

(3)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.

分类

成绩低于60分人数

成绩不低于60分人数

总计

高一年级

高二年级

总计

附:

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

K2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有7名数理化成绩优秀者,其中A1,A2,A3数学成绩优秀,B1,B2物理成绩优秀,C1,C2化学成绩优秀,从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛.

(1)求C1被选中的概率;

(2)求A1,B1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中社团进行社会实践,对岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:

(Ⅰ)补全频率分布直方图并求的值;

(Ⅱ)从岁年龄段的“时尚族”中采用分层抽样法抽取人参加网络时尚达人大赛,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为△AOC的重心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,左右焦点分别为F1 , F2 , 以椭圆短轴为直径的圆与直线 相切.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点F1、斜率为k1的直线l1与椭圆E交于A,B两点,过点F2、斜率为k2的直线l2与椭圆E交于C,D两点,且直线l1 , l2相交于点P,若直线OA,OB,OC,OD的斜率kOA , kOB , kOC , kOD满足kOA+kOB=kOC+kOD , 求证:动点P在定椭圆上,并求出此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调查来自南方和北方的同龄大学生的身高差异,从2016级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下(单位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根据抽测结果,画出茎叶图,对来自南方和北方的大学生的身高作比较,写出统计结论.

(2)设抽测的10名南方大学生的平均身高为x cm,将10名南方大学生的身高依次输入如图所示的程序框图进行运算,问输出的s大小为多少?并说明s的统计学意义.

(3)为进一步调查身高与生活习惯的关系,现从来自南方的这10名大学生中随机抽取2名身高不低于170 cm的学生,求身高为176 cm的学生被抽中的概率.

查看答案和解析>>

同步练习册答案