精英家教网 > 高中数学 > 题目详情

如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,

F为CE上的点,且BF⊥平面ACE 

   (1)求证:AE⊥平面BCE;

   (2)求证:AE∥平面BFD;

 

 

 

【答案】

(1)证明:∵平面

平面,则      ----------------3分

平面,则

平面                ----------------6分

(2)由题意可得的中点,连接

平面,则

中点             ---------9分

中,平面

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=Asin(ωx+φ)(A>0,ω>0,
π
2
<φ<π),x∈[-3,0]的图象,且图象的最高点为B(-1,3
2
);赛道的中间部分为
3
千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧
DE

(1)求ω,φ的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=θ,求当“矩形草坪”的面积最大时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,AC=1,AB=3,∠ACB=
π2
,P为AB的中点且△ABC与矩形BCDE所在的平面互相垂直,CD=2.
(1)求证:AD∥平面PCE;
(2)求三棱锥P-ACE的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,AC=1,AB=3,∠ACB=
π2
,P为AB的中点且△ABC与矩形BCDE所在的平面互相垂直,CD=2.
(1)求证:AD∥平面PCE;
(2)求二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南京市金陵中学高考数学预测试卷(2)(解析版) 题型:解答题

如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=Asin(ωx+φ)(A>0,ω>0,<φ<π),x∈[-3,0]的图象,且图象的最高点为B(-1,3);赛道的中间部分为千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧
(1)求ω,φ的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=θ,求当“矩形草坪”的面积最大时θ的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省高三预测卷2数学 题型:解答题

(本小题满分14分)

如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=(A>0,>0,),x∈[-3,0]的图象,且图象的最高点为B(-1,);赛道的中间部分为千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧

 (1)求的值和∠DOE的值;

(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=,求当“矩形草坪”的面积最大时的值.

 

 

查看答案和解析>>

同步练习册答案