精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax2+2x-3+m(a>1)恒过定点(1,10),则m=
 
考点:指数函数的单调性与特殊点
专题:函数的性质及应用
分析:根指数函数的图象和性质,过点(1,10),则12+2×1-3=0,继而求出m的值.
解答: 解:∵f(x)=ax2+2x-3+m(a>1)恒过定点(1,10),
∴12+2×1-3=0,
∴1+m=10,
∴m=9
故答案为:9
点评:本题主要考查指数函数的单调性和特殊点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|1≤2x≤8},B={x|-1≤log3x≤2}
(1)求A∪B,B∩(∁RA).
(2)已知非空集合C={x|1<x<a},C?B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:2x-3y+2=0和l2:3x-2y+3=0,有一动圆(圆心和半径都动)与l1、l2都相交,并且L1,L2被圆截得的弦长分别是定值26,24,则圆心的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于满足a+b=4的所有实数a,b,则直线3ax+2y-7b=(b-1)y必过定点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )
A、AB∥mB、AC⊥m
C、AC⊥βD、AB∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=2n,n∈Z},B={x|x=2n+1,n∈Z},i是虚数单位,若k∈Z且ik∈{-1,1},则(  )
A、k∈AB、k∈B
C、k∈A∩BD、k∈∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足a1=
1
2
,an=-2Sn•Sn-1 (n≥2且n∈N*).
(Ⅰ)求证:数列{
1
Sn
}是等差数列;   
(Ⅱ)求Sn和an

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,并在两坐标系中取相同的长单位,曲线C的参数方程为
x=-1+2cosθ
y=2+2sinθ
(参数θ∈[0,π]),直线l的极坐标方程为ρ(cosθ-sinθ)=1.则在C上到直线l距离分别为
2
和3
2
的点共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

把下列命题改写成“若p,则q”的形式,并判断它们的真假:
(1)等腰三角形两腰的中线相等;
(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行.

查看答案和解析>>

同步练习册答案