【题目】已知正三棱柱中,,,点为的中点,点在线段上.
(1)当时,求证:;
(2)是否存在点,使二面角等于?若存在,求的长;若不存在,请说明理由.
【答案】(1)证明见解析;(2)存在点,且.
【解析】
试题分析:(1)借助题设条件运用线面垂直的性质定理推证;(2)借助题设运用空间向量的数量积公式建立方程求解.
试题解析:
(1)证明:连接,
因为为正三棱柱,所以为正三角形,
又因为为的中点,所以,
又平面平面,平面平面,
所以平面,所以.
因为,,,所以,,
所以在中,,
在中,,所以,即,
又,
所以平面,平面,所以.
(2)假设存在点满足条件,设,
取的中点,连接,则平面,
所以,,
分别以,,所在直线为,,轴建立空间直角坐标系,
则,,,
所以,,,,
设平面的一个法向量为,
则即令,得,
同理,平面的一个法向量为,
则即取,得,
所以,解得,
故存在点,当时,二面角等于.
科目:高中数学 来源: 题型:
【题目】某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在高为2的梯形中, , , ,过、分别作, ,垂足分别为、。已知,将梯形沿、同侧折起,得空间几何体,如图2。
(1)若,证明: ;
(2)若,证明: ;
(3)在(1),(2)的条件下,求三棱锥的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)是一个水平放置的正三棱柱, 是棱的中点,正三棱柱的主视图如图(2).
(1)图(1)中垂直于平面的平面有哪几个(直接写出符合要求的平面即可,不必说明或证明)
(2)求正三棱柱的体积;
(3)证明: 平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数(,,,)的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.
(1)求函数的表达式;
(2)设函数()的两个极值点,()恰为的零点.当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年12月16日,科幻片《侠盗一号》上映,上映至今,全球累计票房高达8亿美金.为了了解娄底观众的满意度,某影院随机调查了本市观看影片的观众,并用“10分制”对满意度进行评分,分数越高满意度越高,若分数不低于9分,则称该观众为“满意观众”.现从调查人群中随机抽取12名.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).
(1)求从这12人中随机选取1人,该人不是“满意观众”的概率;
(2)从本次所记录的满意度评分大于9.1的“满意观众”中随机抽取2人,求这2人得分不同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水是万物之本、生命之源,节约用水,从我做起.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如下表):
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com