精英家教网 > 高中数学 > 题目详情

【题目】已知命题;命题:函数在区间上为减函数.

(1)若命题为真命题,求实数的取值范围;

(2)若命题“”为真命题,且“”为假命题,求实数的取值范围.

【答案】(1) ;(2) .

【解析】试题分析:(1)当命题为真命题时, ,所以,且,即可解得实数的取值范围;

(2)当命题为真命题时,函数在区间上为减函数,所以.因为命题“”为真命题,且“”为假命题,所以命题一真一假,分假, 真两种情况进行讨论即得实数的取值范围.

试题解析:

(1)当命题为真命题时,

,且

解得

即实数的取值范围为.

(2)当命题为真命题时,函数在区间上为减函数,

.

∵命题“”为真命题,且“”为假命题,∴命题一真一假.

①当假时, ,解得

②当真时, ,解得.

综上,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

参加书法社团

未参加书法社团

参加演讲社团

8

5

未参加演讲社团

2

30

(1)从该班随机选1名同学,求该同学至少参加一个社团的概率;

(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10

(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;

(3)求续保人本年度平均保费的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度,所得图象对应的函数

A. 在区间上单调递增 B. 在区间上单调递减

C. 在区间上单调递增 D. 在区间上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示.若数列{an}是公差不为0的等差数列,设集合A={a1 , a2 , a3 , …,a2016},则L(A)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为 ,且经过点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)的顶点都在椭圆上,其中关于原点对称,试问能否为正三角形?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 已知四边形ABCDBCEG均为直角梯形,ADBC,CEBG,且,平面ABCD平面BCEGBC=CD=CE=2AD=2BG=2.

1)求证:ECCD

2)求证:AG平面BDE

3)求:几何体EG-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为R,并且图象关于y轴对称,当x≤-1时,yf(x)的图象是经过点(-2,0)(-1,1)的射线,又在yf(x)的图象中有一部分是顶点在(0,2),且经过点(1,1)的一段抛物线.

(1)试求出函数f(x)的表达式,作出其图象

(2)根据图象说出函数的单调区间,以及在每一个单调区间上函数是增函数还是减函数.

查看答案和解析>>

同步练习册答案