精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域为D,若对于a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f(x)为“三角形函数”.给出下列四个函数: ①f(x)=lg(x+1)(x>0);
②f(x)=4﹣cosx;


其中为“三角形函数”的个数是(
A.1
B.2
C.3
D.4

【答案】B
【解析】解:若f(x)为“三角形函数, 则f(x)max﹣f(x)min<f(x)min
①若f(x)=lg(x+1)(x>0),则f(x)∈(0,+∞),不满足条件;
②若f(x)=4﹣cosx,则f(x)∈[3,5],满足条件;
③若 ,则f(x)∈[1,4],不满足条件;
④若 =1+ ,则f(x)∈(1,2),满足条件;
故选:B
【考点精析】掌握函数的最值及其几何意义是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos4x+sin2x,下列结论中错误的是(
A.f(x)是偶函数
B.函f(x)最小值为
C. 是函f(x)的一个周期
D.函f(x)在(0, )内是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD= ,则sin∠BAC=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xex
(1)求f(x)的极值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率.为庆祝该节日,某校举办的数学嘉年华活动中,设计了一个有奖闯关游戏,游戏分为两个环节. 第一环节“解锁”:给定6个密码,只有一个正确,参赛选手从6个密码中任选一个输入,每人最多可输三次,若密码正确,则解锁成功,该选手进入第二个环节,否则直接淘汰.
第二环节“闯关”:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得10个、20个、30个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏,也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为 ,选手选择继续闯关的概率均为 ,且各关之间闯关成功与否互不影响.
(1)求某参赛选手能进入第二环节的概率;
(2)设选手甲在第二环节中所得学豆总数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y= x2(p>0)的焦点与双曲线C2 ﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|.
(1)若a≤2,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中e为自然对数的底数.
(1)求函数 在x 1处的切线方程;
(2)若存在 ,使得 成立,其中 为常数,
求证:
(3)若对任意的 ,不等式 恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案