【题目】已知,.
(1)解不等式;
(2)若恒成立,求实数的取值范围.
【答案】(1)(2)
【解析】
(1)解法一:把不等式的两边分别平方,去掉绝对值进行求解;解法二:根据绝对值定义化为几个不等式组,最后求交集;
(2)解法一:利用分类讨论去掉绝对值,转化为恒成立问题进行求解;解法二:借助数形结合进行求解.
(1)解法一:不等式等价于
或,故解集为.
解法二:不等式的解集为下述几个不等式组解集的并集
①②③
取其并集易得答案为.
(2)不等式即
解法一:①当时,,即,
即在时恒成立,故.
②当时,,对恒成立,.
③当时,,对恒成立,故.
④当时,.
综上,的取值范围为.
解法二:(数形结合)设,,
画两个函数图象,而恒过定点,斜率为,分为左、中、右三段,此三段斜率分别为,,,且经过.
由于,故可知及时,图象恒在图象的下方,满足题意,综上,.
科目:高中数学 来源: 题型:
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
包裹重量(单位:) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如下表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,,并且函数在实数集上是单调增函数,求实数的取值范围;
(2)若,,,求函数在区间上的值域;
(3)若,都不为0,记函数的图象为曲线,设点,是曲线上的不同两点,点为线段的中点,过点作轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)若点在直线上,求直线的极坐标方程;
(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.
(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;
(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,,椭圆上一点到的距离之和为4.过点作直线的垂线交直线于点.
(1)求椭圆的标准方程;
(2)试判断直线与椭圆公共点的个数,并说明理由;
(3)直线与直线交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中为自然对数的底数).
(1)若,求函数在区间上的最大值;
(2)若,关于的方程有且仅有一个根, 求实数的取值范围;
(3)若对任意,不等式均成立, 求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com