精英家教网 > 高中数学 > 题目详情

【题目】已知.

1)解不等式

2)若恒成立,求实数的取值范围.

【答案】12

【解析】

1)解法一:把不等式的两边分别平方,去掉绝对值进行求解;解法二:根据绝对值定义化为几个不等式组,最后求交集;

2)解法一:利用分类讨论去掉绝对值,转化为恒成立问题进行求解;解法二:借助数形结合进行求解.

1)解法一:不等式等价于

,故解集为.

解法二:不等式的解集为下述几个不等式组解集的并集

取其并集易得答案为.

2)不等式即

解法一:①当时,,即

时恒成立,故.

②当时,恒成立,.

③当时,恒成立,故.

④当时,.

综上,的取值范围为.

解法二:(数形结合)设

画两个函数图象,而恒过定点,斜率为分为左、中、右三段,此三段斜率分别为,且经过.

由于,故可知时,图象恒在图象的下方,满足题意,综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)试求上的最大值;

2)已知处的切线与轴平行,若存在,使得,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.

该公司将最近承揽的100件包裹的重量统计如下:

包裹重量(单位:

1

2

3

4

5

包裹件数

43

30

15

8

4

公司对近60天,每天揽件数量统计如下表:

包裹件数范围

0~100

101~200

201~300

301~400

401~500

包裹件数(近似处理)

50

150

250

350

450

天数

6

6

30

12

6

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,并且函数在实数集上是单调增函数,求实数的取值范围;

2)若,求函数在区间上的值域;

3)若都不为0,记函数的图象为曲线,设点是曲线上的不同两点,点为线段的中点,过点轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体中,,平面平面,且.

(1)证明:平面

(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,).在以坐标原点为极点、轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)若点在直线上,求直线的极坐标方程;

(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,点,动点满足,点为线段的中点,抛物线上点的纵坐标为.

(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;

(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,椭圆上一点的距离之和为4.过点作直线的垂线交直线于点

1)求椭圆的标准方程;

2)试判断直线与椭圆公共点的个数,并说明理由;

3)直线与直线交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数).

1)若,求函数在区间上的最大值;

2)若,关于的方程有且仅有一个根, 求实数的取值范围;

3)若对任意,不等式均成立, 求实数的取值范围.

查看答案和解析>>

同步练习册答案