精英家教网 > 高中数学 > 题目详情

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

【答案】B

【解析】

分别分析乌龟和兔子随时间变化它们的路程变化的情况,即可求解,得到答案.

由题意,对于乌龟,其运动过程可分为两端,

从起点到终点乌龟没有停歇,其路程不断增加,

到达终点后等兔子这段时间路程不变,此时图象为水平线段,

对于兔子,其运动过程可分为三段:

开始跑的快,所以路程增加快,中间睡觉时路程不变,图象为水平线段,

醒来时追赶乌龟路程加快,

分析图象,可知只有选项B符合题意.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆M:: (a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.
(1)求椭圆方程;
(2)当直线l的倾斜角为45°时,求线段CD的长;
(3)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DOAB是边长为2的正三角形,当一条垂直于底边OA(垂足不与OA重合)的直线x=t从左至右移动时,直线l把三角形分成两部分,记直线l左边部分的面积y

)写出函数y= ft)的解析式;

)写出函数y= ft)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数满足如下四个条件:

定义域为

③当时,

④对任意满足.

根据上述条件,求解下列问题:

的值.

应用函数单调性的定义判断并证明的单调性.

求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列的前项和,且

(1)求

(2)令,计算,由此推测数列是等差数列还是等比数列,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数是自然对数的底数).

(1)若有最小值,求的取值范围,并求出的最小值;

(2)若对任意实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项都是正数的数列{an}的前n项和为Sn , Sn=an2+ an , n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=1,bn﹣bn1=2an(n≥2),求数列{ }的前n项和Tn
(3)若Tn≤λ(n+4)对任意n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点列{An}、{Bn}分别在锐角两边(不在锐角顶点),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q表示点P与Q不重合),若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(

A.{dn}是等差数列
B.{Sn}是等差数列
C.{d }是等差数列
D.{S }是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)= sin2x﹣ cos2x+1的图象向左平移 个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是(
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x=
C. g(x)dx=
D.函数y=g(x)在区间[ ]上单调递减

查看答案和解析>>

同步练习册答案