精英家教网 > 高中数学 > 题目详情

“ab≠0”是指.


  1. A.
    a≠0且b≠0
  2. B.
    a≠0或b≠0
  3. C.
    a、b中至少有一个不为0
  4. D.
    a、b不同时为0
A
ab≠0是指a≠0且b≠0,所以选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

科目:高中数学 来源:新课程高中数学疑难全解 题型:013

“ab≠0”是指(  ).

[  ]

A.a≠0且b≠0

B.a≠0或b≠0

C.a、b中至少有一个不为0

D.a、b不同时为0

查看答案和解析>>

科目:高中数学 来源:上海市十三校2012届高三第二次联考数学文科试题 题型:044

现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1),B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.

(1)已知A(-3,-3),B(3,2),求A、B两点的距离D(AB)

(2)求到定点M(1,2)的“直角距离”为2的点的轨迹方程.

并写出所有满足条件的“格点”的坐标(格点是指横、纵坐标均为整数的点).

(3)求到两定点F1、F2的“直角距离”和为定值2a(a>0)的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.

①F1(-1,0),F2(1,0),a=2;

②F1(-1,-1),F2(1,1),a=2;

③F1(-1,-1),F2(1,1),a=4.

查看答案和解析>>

科目:高中数学 来源:上海市十三校2012届高三第二次联考数学理科试题 题型:044

现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1),B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.

(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标.(格点指横、纵坐标均为整数的点)

(2)求到两定点F1、F2的“直角距离”和为定值2a(a>0)的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.

①F1(-1,0),F2(1,0),a=2;

②F1(-1,-1),F2(1,1),a=2;

③F1(-1,-1),F2(1,1),a=4.

(3)写出同时满足以下两个条件的“格点”的坐标,并说明理由(格点指横、纵坐标均为整数的点).

①到A(-1,-1),B(1,1)两点“直角距离”相等;

②到C(-2,-2),D(2,2)两点“直角距离”和最小.

查看答案和解析>>

同步练习册答案