【题目】中山某学校的场室统一使用“欧普照明”的一种灯管,已知这种灯管使用寿命(单位:月)服从正态分布,且使用寿命不少于个月的概率为,使用寿命不少于个月的概率为.
(1)求这种灯管的平均使用寿命;
(2)假设一间课室一次性换上支这种新灯管,使用个月时进行一次检查,将已经损坏的灯管换下(中途不更换),求至少两支灯管需要更换的概率.
【答案】:(1)18个月;(2)(写成0.1808也可以).
【解析】试题分析:(1)根据题意,显然,结合正态分布密度函数的对称性可知, ,从而得出每支这种灯管的平均使用寿命;(2)先算出每支灯管使用个月时已经损坏的概率,假设使用个月时该功能室需要更换的灯管数量为支,则,独立重复使用概率公式概以及对事件的概率公式可得出至少两支灯管需要更换的概率.
试题解析:(1)∵, , ,∴,
显然
由正态分布密度函数的对称性可知, ,
即每支这种灯管的平均使用寿命是个月;
(2)每支灯管使用个月时已经损坏的概率为,
假设使用个月时该室需更换的灯管数量为支,则
故至少两支灯管需要更换的概率
(写成0.1808也可以).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,
f(x)= .
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的倾斜角;
(2)设点,直线和曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,三个函数的定义域均为集合.
(1)若恒成立,满足条件的实数组成的集合为,试判断集合与的关系,并说明理由;
(2)记,是否存在,使得对任意的实数,函数有且仅有两个零点?若存在,求出满足条件的最小正整数;若不存在,说明理由.(以下数据供参考: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】韩国民意调查机构“盖洛普韩国”2016年11月公布的民调结果显示,受“闺蜜门”时间影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.
(1)依频率分布直方图求出图中各年龄层的人数
(2)请依上述支持率完成下表:
年龄分布 是否支持 | [30,40)和[40,50) | [50,60)和[60,70) | 合计 |
支持 | |||
不支持 | |||
合计 |
根据表中的数据,能否在犯错误的概率不超过0.001的前提下认为年龄与支持率有关?
附表:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中 参考数据:125×33=15×275,125×97=25×485)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数,其图象与轴交于, 两点,且.
(Ⅰ)求的取值范围;
(Ⅱ)证明: (为的导函数).
(Ⅲ)设点在函数图象上,且为等腰直角三角形,记,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com