精英家教网 > 高中数学 > 题目详情

已知fn(x)=(1+2数学公式n,n∈N*
(1)若g(x)=f4(x)+f5(x)+f6(x),求g(x)中含x2项的系数;
(2)若pn是fn(x)展开式中所有无理项的二项式系数和,数列{an}是各项都大于1的数组成的数列,试用数学归纳法证明:数学公式

解:(1)g(x)=f4(x)+f5(x)+f6(x)=(1+24+(1+25+(1+26
∴g(x)中含x2项的系数为 16+5×16+15×16=336.(3分)
(2)证明:由题意,pn=2n-1.(5分)
①当n=1时,p1(a1+1)=a1+1,成立;
②假设当n=k时,pk(a1a2…ak+1)≥(1+a1)(1+a2)…(1+ak)成立,
当n=k+1时,(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k-1(a1a2…ak+1)(1+ak+1
=2k-1(a1a2…akak+1+a1a2…ak+ak+1+1).(*)
∵ak>1,a1a2…ak(ak+1-1)≥ak+1-1,即a1a2…akak+1+1≥a1a2…ak+ak+1
代入(*)式得(1+a1)(1+a2)…(1+ak)(1+ak+1)≤2k(a1a2…akak+1+1)成立.
综合①②可知,pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an)对任意n∈N*成立,
对任意n∈N*成立.(10分)
分析:(1)先确定函数g(x),再利用二项式定理可得g(x)中含x2项的系数;
(2)确定pn的表达式,根据数学归纳法的步骤,先证n=1时成立,再设n=k时成立,利用归纳假设证明n=k+1时成立即可.
点评:本题考查二项式定理,考查数学归纳法的运用,掌握数学归纳法的证题步骤是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知fn(x)=(1+x)n
(Ⅰ)若f2011(x)=a0+a1x+…+a2011x2011,求a1+a3+…+a2009+a2011的值;
(Ⅱ)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数;
(Ⅲ)证明:
C
m
m
+2
C
m
m+1
+3
C
m
m+2
+…+n
C
m
m+n-1
=[
(m+1)n+1
m+2
]
C
m+1
m+n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知fn(x)=(1+x)n
(1)若f11(x)=a0+a1x+a2x2+…+a11x11,求a1+a3+…+a11的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数;
(3)证明:
C
m
m
+2
C
m
m+1
+3
C
m
m+2
+…+n
C
m
m+n-1
=[
(m+1)n+1
m+2
]
C
m+1
m+n

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知fn(x)=(1+x)+2(1+x)2+…+n(1+x)n=an0+an1x+…+annxn,n∈N*,这些系数可形成如下数阵:
(1)求出a31,a32的值;
(2)若n=9,求a91+a95+a97+a99的值;
(3)求数列{aij}(其中i,j∈N*,且1≤j≤i≤n)的和S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知fn(x)=(1+x)n
(1)若f2011(x)=a0+a1x+…+a2011x2011,求a1+a3+…+a2009+a2011的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知fn(x)=(1+x)n
(1)若数学公式,求a1+a3+…+a2009+a2011的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数.

查看答案和解析>>

同步练习册答案