精英家教网 > 高中数学 > 题目详情

【题目】已知函数x R , e 为自然对数的底数).

判断函数 f x 的单调性与奇偶性;

⑵是否存在实数 t 使不等式对一切的 x R 都成立若存在,求出 t 的值 不存在说明理由

【答案】(1)证明见解析;(2)存在,

【解析】

(1)利用函数奇偶性和单调性的定义证明函数的奇偶性和单调性.(2)由函数的奇偶性和单调性得到对一切的xR都成立,再利用判别式得解.

函数定义域为R,关于原点对称, ,

,f(x)是奇函数.

以下证明f(x)R上单调递增:

任取x1,x2R,x1<x2 ,

所以函数单调递增.

(2)存在,证明: 等价成,对一切的xR都成立,可得

所以当时,使不等式对一切的 x R 都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的反函数,定义:若对于给定实数,函数)互成反函数,则称满足和性质,若函数互为反函数,则称满足积性质

1)判断函数是否满足“1和性质,并说明理由;

2)求所有满足“2和性质的一次函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,判断函数的奇偶性,并加以证明

(2)若函数上是增函数,求实数的取值范围;

(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):

若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。

(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从高三学生中抽取名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间,且成绩在区间的学生人数是人.

(1)求的值;

(2)若从数学成绩(单位:分)在的学生中随机选取人进行成绩分析.

①列出所有可能的抽取结果;

②设选取的人中,成绩都在内为事件,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆C的左、右焦点,过且斜率不为零的动直线l与椭圆C交于AB两点.

的周长;

若存在直线l,使得直线AB与直线分别交于PQR三个不同的点,且满足PQRx轴的距离依次成等比数列,求该直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x-4y+3=0.

1若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.

2点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

同步练习册答案