精英家教网 > 高中数学 > 题目详情
如图已知抛物线过点,直线两点,过点且平行于轴的直线分别与直线轴相交于点

(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.
(1)p=1;(2)详见解析.

试题分析:(1)因为在抛物线C上,所以将点P坐标代入方程,即可求得p=1.
(2)先假设存在定点Q,设A(x1,y1),B(x2,y2),AB的方程为y=kx+b.联立,当时,有.由题意知,
因为△PAM与△PBN的面积相等,所以,即 解得.所求的定点Q即为点A,即l过Q(0,0)或Q (2,2)时,满足条件.
试题解析:(1)因为在抛物线C上,所以1=2p·,得p=1. 
(2)假设存在定点Q,设A(x1,y1),B(x2,y2),AB的方程为y=kx+b.
联立,当时,有
所以()()=(*)由题意知,
因为△PAM与△PBN的面积相等,所以

也即
根据(*)式,得()2=1,解得
所求的定点Q即为点A,
即l过Q(0,0)或Q(2,2)时,满足条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知过曲线上任意一点作直线的垂线,垂足为,且.
⑴求曲线的方程;
⑵设是曲线上两个不同点,直线的倾斜角分别为
变化且为定值时,证明直线恒过定点,
并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为坐标原点,为抛物线的焦点,上一点,若,则△的面积为(  )
A.2B.C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线到焦点的距离为,则实数的值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则OM=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,焦点为F(5,0)的抛物线的标准方程是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A(4,4)在抛物线y2=px(p>0)上,该抛物线的焦点为F,过点A作直线l:x=-的垂线,垂足为M,则∠MAF的平分线所在直线的方程为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2ax过点A,那么点A到此抛物线的焦点的距离为________.

查看答案和解析>>

同步练习册答案