已知函数,其中.
⑴若,求曲线在点处的切线方程;
⑵若在区间上,恒成立,求a的取值范围.
⑴y=6x-9(2) 0<a<5
【解析】(Ⅰ)解:当a=1时,f(x)=,f(2)=3;f’(x)=, f’(2)=6.所以曲线y=f(x)在点(2,f(2))处的切线方程为y-3=6(x-2),即y=6x-9.
(Ⅱ)解:f’(x)=.令f’(x)=0,解得x=0或x=.
以下分两种情况讨论:
(1) 若,当x变化时,f’(x),f(x)的变化情况如下表:
X |
0 |
||
f’(x)[来源:Zxxk.Com] |
+ |
0 |
- |
f(x) |
极大值 |
当等价于
解不等式组得-5<a<5.因此.
(2) 若a>2,则.当x变化时,f’(x),f(x)的变化情况如下表:
X |
0 |
||||
f’(x) |
+[来源:Zxxk.Com] |
0 |
- |
0 |
+ |
f(x) |
极大值 |
极小值 |
当时,f(x)>0等价于即
解不等式组得或.因此2<a<5.
综合(1)和(2),可知a的取值范围为0<a<5.
科目:高中数学 来源: 题型:
(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。
(1)求c的值;
(2)设的两个极值点,且的取值范围;
(3)在(2)的条件下,求b的最大值。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题
已知函数,其中是自然对数的底数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题
已知函数(其中是实数常数,)
(1)若,函数的图像关于点(—1,3)成中心对称,求的值;
(2)若函数满足条件(1),且对任意,总有,求的取值范围;
(3)若b=0,函数是奇函数,,,且对任意时,不等式恒成立,求负实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com