精英家教网 > 高中数学 > 题目详情

已知函数,其中.

⑴若,求曲线在点处的切线方程;

⑵若在区间上,恒成立,求a的取值范围.

 

【答案】

⑴y=6x-9(2) 0<a<5

【解析】(Ⅰ)解:当a=1时,f(x)=,f(2)=3;f’(x)=, f’(2)=6.所以曲线y=f(x)在点(2,f(2))处的切线方程为y-3=6(x-2),即y=6x-9.

(Ⅱ)解:f’(x)=.令f’(x)=0,解得x=0或x=.

以下分两种情况讨论:

(1)   若,当x变化时,f’(x),f(x)的变化情况如下表:

X

0

f’(x)[来源:Zxxk.Com]

+

0

-

f(x)

极大值

     当等价于

     解不等式组得-5<a<5.因此.

(2)   若a>2,则.当x变化时,f’(x),f(x)的变化情况如下表:

X

0

f’(x)

+[来源:Zxxk.Com]

0

-

0

+

f(x)

极大值

极小值

时,f(x)>0等价于

解不等式组得.因此2<a<5.

综合(1)和(2),可知a的取值范围为0<a<5.

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案