分析 先根据△ABF1为等腰三角形,然后利用双曲线的定义分别将边长表示为a的关系,然后利用余弦定理建立a,c的方程,从而求出双曲线的离心率.
解答 解:如图,△ABF1为等腰三角形,∴AF1=AB=AF2+F2B,
∴AF1-AF2=F2B=2a,
∵BF1-BF2=2a,∴BF1=4a,
∵直线AB的倾斜角为60°,∴∠F′F2B=60°
∵F1F2=2C,在三角形F1F2B中,根据余弦定理得:
(4a)2=(2a)2+(2c)2-2•(2a)•2c•cos60°
整理得,3a2+ac-c2=0同除以a2得,$(\frac{c}{a})^{2}$-$\frac{c}{a}$-3=0,
即e2-e-3=0,解得${e}_{1}=\frac{1+\sqrt{13}}{2}$,${e}_{2}=\frac{1-\sqrt{13}}{2}$(舍).
故答案为:$\frac{1+\sqrt{13}}{2}$.
点评 本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意双曲线的性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=x-1 | B. | y=x2 | C. | y=x3 | D. | $y={x^{-\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 定义域是R,值域是R | B. | 定义域是R,值域为(0,+∞) | ||
C. | 定义域是(0,+∞),值域为R | D. | 定义域是R,值域是(-1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x0∈R x02-x0+1<0 | B. | ?x0∈R x02-x0+1≤0 | ||
C. | ?x∈R x2-x+1<0 | D. | ?x∈R x2-x+1≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com