【题目】已知椭圆及点,若直线与椭圆交于点,且( 为坐标原点),椭圆的离心率为.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆于不同的两点,求面积的最大值.
【答案】(1) ;(2)1.
【解析】试题分析: 由椭圆的离心率公式得到,设点在第一象限,由椭圆的对称性可知,所以,进而求得点的坐标,然后联立方程求得,即可得到椭圆的标准方程;
设直线的方程为,联立椭圆方程,求得或,设,求出的值,又由题意得, 到直线的距离,进而求得面积的最大值
解析:(1)由椭圆的离心率为,得,所以.
设点在第一象限,由椭圆的对称性可知,所以,
因为点坐标为,所以点坐标为,
代入椭圆的方程得,与联立,
可得,所以椭圆的标准方程为.
(2)设直线的方程为,由得.
由题意得, ,
整理得,所以或.
设,则,
所以
.
又由题意得, 到直线的距离.
的面积
当且仅当,即时取等号,且此时满足,
所以面积的最大值为1.
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为“依赖函数”.
(1) 判断函数g(x)=2x是否为“依赖函数”,并说明理由;
(2) 若函数f(x)=(x–1)2在定义域[m,n](m>1)上为“依赖函数”,求实数m、n乘积mn的取值范围;
(3) 已知函数f(x)=(x–a)2 (a<)在定义域[,4]上为“依赖函数”.若存在实数x[,4],使得对任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求实数s的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,
(1)求圆心C的轨迹E的方程;
(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车快.若每人离开甲地的距离与所用时间的函数用图象表示,则甲、乙对应的图象分别是
A.甲是(1),乙是(2)B.甲是(1),乙是(4)
C.甲是(3),乙是(2)D.甲是(3),乙是(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数具备以下两个条件:(1)至少有一条对称轴或一个对称中心;(2)至少有两个零点,则称这样的函数为“多元素”函数,下列函数中为“多元素”函数的是_______.
①;②;③;④.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列语句是否为命题?如果是,判断它的真假.
(1)这道数学题有趣吗?(2)0不可能不是自然数;(3);(4);
(5)91不是素数;(6)上海的空气质量越来越好.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);
(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;
②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.
附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;
②若,则, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com