精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆及点,若直线与椭圆交于点,且为坐标原点),椭圆的离心率为.

(1)求椭圆的标准方程;

(2)若斜率为的直线交椭圆于不同的两点,求面积的最大值.

【答案】(1) ;(2)1.

【解析】试题分析: 由椭圆的离心率公式得到设点在第一象限,由椭圆的对称性可知,所以,进而求得点的坐标,然后联立方程求得,即可得到椭圆的标准方程;

设直线的方程为,联立椭圆方程,求得,设,求出的值,又由题意得, 到直线的距离,进而求得面积的最大值

解析:(1)由椭圆的离心率为,得,所以.

设点在第一象限,由椭圆的对称性可知,所以

因为点坐标为,所以点坐标为

代入椭圆的方程得,与联立,

可得,所以椭圆的标准方程为.

(2)设直线的方程为,由.

由题意得,

整理得,所以.

,则

所以

.

又由题意得, 到直线的距离.

的面积

当且仅当,即时取等号,且此时满足

所以面积的最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为依赖函数

(1) 判断函数g(x)=2x是否为依赖函数,并说明理由;

(2) 若函数f(x)=(x–1)2在定义域[mn](m>1)上为依赖函数,求实数mn乘积mn的取值范围;

(3) 已知函数f(x)=(x–a)2 (a<)在定义域[4]上为依赖函数.若存在实数x[4],使得对任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求实数s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若恒成立,求的值;

(3)当时, 恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆C过定点F20),且与直线x=-2相切,圆心C的轨迹为E

1)求圆心C的轨迹E的方程;

2)若直线lEPQ两点,且线段PQ的中心点坐标(11),求|PQ|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车快.若每人离开甲地的距离与所用时间的函数用图象表示,则甲、乙对应的图象分别是

A.甲是(1),乙是(2)B.甲是(1),乙是(4)

C.甲是(3),乙是(2)D.甲是(3),乙是(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数具备以下两个条件:(1)至少有一条对称轴或一个对称中心;(2)至少有两个零点,则称这样的函数为“多元素”函数,下列函数中为“多元素”函数的是_______.

;②;③;④.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列语句是否为命题?如果是,判断它的真假.

1)这道数学题有趣吗?(20不可能不是自然数;(3;(4

591不是素数;(6)上海的空气质量越来越好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若,则

查看答案和解析>>

同步练习册答案