精英家教网 > 高中数学 > 题目详情

已知命题表示的曲线是双曲线;命题函数在区间上为增函数,若“”为真命题,“”为假命题,求实数的取值范围.

实数的取值范围是.

解析试题分析:由“”为真命题,“”为假命题得出,一真一假. 分别根据双曲线方程的形式,函数的单调性得出所需的条件,则可得出的范围.
试题解析:
解:表示的曲线是双曲线,则有
解得:                                2分
函数在区间上为增函数,
 在区间上恒成立,于是                 5分
 “”为真命题,“”为假命题,一真一假.    6分
,则解得:       8分
,则解得:     10分
综上所述,满足条件的实数的取值范围是  12分
考点:双曲线的标准方程,用导数判断函数的单调性,逻辑联结词.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2014·西安模拟)已知函数f(x)=2x,g(x)=+2.
(1)求函数g(x)的值域.
(2)求满足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求的极大值点;
(2)设函数的图象与函数的图象交于两点,过线段的中点做轴的垂线分别交于点,证明:在点处的切线与在点处的切线不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试判断并用定义证明函数的单调性;
(2)当时,求证函数存在反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线C1的参数方程为:为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:
(1)求曲线C2的直角坐标方程;
(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)的左焦为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心为(p,q).
(1).当p+q≤0时,求椭圆的离心率的取值范围;
(2).若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,的最小值为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)令,求的解析式;
(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对任意的恒有成立.
(1)记如果为奇函数,求b,c满足的条件;
(2)当b=0时,记)上为增函数,求c的取值范围;
(3)证明:当时,成立;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,说明a可取哪些值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案