精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=﹣1,对任意x∈R都有f(x)≥x﹣1,且f(﹣ +x)=f(﹣ ﹣x).
(1)求函数f(x)的解析式;
(2)是否存在实数a,使函数g(x)=log [f(a)]x在(﹣∞,+∞)上为减函数?若存在,求出实数a的取值范围;若不存在,说明理由.

【答案】
(1)解:由f(x)=ax2+bx+c(a≠0)及f(0)=﹣1∴c=﹣1

又对任意x∈R,有

∴f(x)图象的对称轴为直线x=﹣ ,则﹣ =﹣ ,∴a=b

又对任意x∈R都有f(x)≥x﹣1,

即ax2+(b﹣1)x≥0对任意x∈R成立,

,故a=b=1∴f(x)=x2+x﹣1


(2)解:由(1)知 = (a2+a﹣1)x,其定义域为R

令u(x)=(a2+a﹣1)x

要使函数g(x)= (a2+a﹣1)x在(﹣∞,+∞)上为减函数,

只需函数u(x)=(a2+a﹣1)x在(﹣∞,+∞)上为增函数,由指数函数的单调性,有a2+a﹣1>1,解得a<﹣2或a>1故存在实数a,当a<﹣2或a>1时,函数 在(﹣∞,+∞)上为减函数


【解析】(1)根据f(0)=﹣1可求出c的值,根据 可得a与b的关系,最后根据对任意x∈R都有f(x)≥x﹣1,可求出a与b的值,从而求出函数f(x)的解析式;(2)令u(x)=f(a),要使函数 在(﹣∞,+∞)上为减函数,只需函数u(x)=f(a)在(﹣∞,+∞)上为增函数,由指数函数的单调性可得a的取值范围.
【考点精析】关于本题考查的函数单调性的判断方法,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一个动点P在圆x2+y2=36上移动,它与定点Q(4,0)所连线段的中点为M.
(1)求点M的轨迹方程.
(2)过定点(0,﹣3)的直线l与点M的轨迹交于不同的两点A(x1 , y1),B(x2 , y2)且满足 + = ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若异面直线a、b所成的角为60°,则过空间一点P且与a、b所成的角都为60°的直线有条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)若在区间上为增函数,求的取值范围;

)当时,证明:

)当时,断方程是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},对任意的k∈N* , 当n=3k时,an= ;当n≠3k时,an=n,那么该数列中的第10个2是该数列的第项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1+a5=17.
(1)若{an}还同时满足: ①{an}为等比数列;②a2a4=16;③对任意的正整数n,a2n<a2n+2 , 试求数列{an}的通项公式.
(2)若{an}为等差数列,且S8=56. ①求该等差数列的公差d;②设数列{bn}满足bn=3nan , 则当n为何值时,bn最大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, 已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设是曲线上两点,点关于轴的对称点为 (异于点),若直线分别交轴于点,证明: 为定值.

查看答案和解析>>

同步练习册答案