精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣x2与g(x)=(x﹣2)2 ﹣m的图象上存在关于(1,0)对称的点,则实数m的取值范围是(
A.(﹣∞,1﹣ln2)
B.(﹣∞,1﹣ln2]
C.(1﹣ln2,+∞)
D.[1﹣ln2,+∞)

【答案】D
【解析】解:由已知可得:g(x)=(x﹣2)2 ﹣m的图象

与函数y=﹣f(2﹣x)=﹣ln(2﹣x)+(2﹣x)2的图象有交点,

即(x﹣2)2 ﹣m=﹣ln(2﹣x)+(2﹣x)2有解,

即m=ln(2﹣x)﹣ 有解,

令t=2﹣x,y=ln(2﹣x)﹣ =lnt+

则y′= =

当t∈(0, )时,y′<0,函数为减函数;

当t∈( ,+∞)时,y′>0,函数为增函数;

故当t= 时,函数取最小值ln +1=1﹣ln2,无最大值,

故m∈[1﹣ln2,+∞),

故选:D

【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2 ,D是AA1的中点,BD与AB1交于点O,且CO⊥平面ABB1A1

(Ⅰ)证明:平面AB1C⊥平面BCD;
(Ⅱ)若OC=OA,△AB1C的重心为G,求直线GD与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=blnx+a(a>0,b>0)在x=1处的切线与圆(x﹣2)2+y2=4相交于A、B两点,并且弦长|AB|= 2 ,则 + 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为 (α为参数)
(1)求曲线C的普通方程;
(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为 ρsin( ﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1 , C2的极坐标方程;
(Ⅱ)若直线C3的极坐标方程为θ= (ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(I)讨论函数的单调性,并证明当x>﹣2时,xex+2+x+4>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)= (x>﹣2)有最小值,设g(x)最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x﹣2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),则a,b,c的大小关系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函数f(x)= 的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为 ,在原点右侧与x轴的第一个交点为
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求边长c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ ),将其图象向右平移 ,则所得图象的一条对称轴是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

同步练习册答案