精英家教网 > 高中数学 > 题目详情

设是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,求出a的取值范围;如果不存在,请说明理由.

答案:
解析:

  解:设g(x)=ax2-x,并假设符合条件的实数a存在.

  当a>1时,为使函数f(x)=loga(ax2-x)在区间\[2,4\]上是增函数,需g(x)=ax2-x在区间\[2,4\]上是增函数,

  故应满足

  解得a>.又∵a>1,∴a>1.

  当0<a<1时,为使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数,需g(x)=ax2-x在区间[2,4]上是减函数,

  故应满足x=此不等式组无解.

  综上可知,当a>1时,函数f(x)=loga(ax2-x)在区间[2,4]上是增函数.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=
ln|x|
|x|
,x∈[-e,0)
,求证:当a=-1时,f(x)>g(x)+
1
2

(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+ax-4(a∈R).
(1)若函数f(x)恰有一个零点,求a的值;
(2)若对任意a∈[1,2],f(x)≤0恒成立,求x的取值范围;
(3)设函数g(x)=(a+1)x2+2ax+2a-5,是否存在实数a,使得当x∈(-2,-1)时,函数g(x)的图象始终在f(x)图象的上方,若存在,试求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-
a
2x
,将y=f(x)的图象向右平移两个单位,得到y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)若函数y=h(x)与函数y=g(x)的图象关于直线y=1对称,求函数y=h(x)的解析式;
(3)设F(x)=
1
a
f(x)+h(x)
,设F(x)的最小值为m.是否存在实数a,使m>2+
7
,若存在,求出a的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为2的正方形ABCD边上有点P,沿着折线BCDA由点B(起点)向A(终点)运动(不包括B、A两点),设P运动的路程为x,△PAB的面积为y.
(1)求y关于x的函数关系式y=f(x);
(2)画出函数y=f(x)的图象;
(3)是否存在实数a,使函数y=f(x)的图象关于直线x=a对称?若不存在,则说明理由;若存在,则写出a的值.

查看答案和解析>>

同步练习册答案