精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1的棱长为1,点M 在棱AB上,且AM=
1
3
,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与点P到点M 的距离的平方差为2,则动点P的轨迹是(  )
A.圆B.抛物线C.双曲线D.直线

如图所示:正方体ABCD-A1B1C1D1中,
作PQ⊥AD,Q为垂足,则PQ⊥面ADD1A1
过点Q作QR⊥D1A1则D1A1⊥面PQR,
PR即为点P到直线A1D1的距离,
由题意可得 PR2-PQ2=RQ2=4.
又已知 PR2-PM2=4,
∴PM=PQ,
即P到点M的距离等于P到AD的距离,
根据抛物线的定义可得,点P的轨迹是抛物线,
故选 B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过点(0,1)引直线与双曲线x2-y2=1只有一个公共点,这样的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆焦距为2,离心率为
1
2

(1)求椭圆的标准方程
(2)若直线l过点(1,2)且倾斜角为45°且与椭圆相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A,B∈R,A≠B且AB≠0,则方程Bx-y+A=0和
x2
B
-
y2
A
=1
在同一坐标系下的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1
,直线l过点M(m,0).
(Ⅰ)若直线l交y轴于点N,当m=-1时,MN中点恰在椭圆C上,求直线l的方程;
(Ⅱ)如图,若直线l交椭圆C于A,B两点,当m=-4时,在x轴上是否存在点p,使得△PAB为等边三角形?若存在,求出点p坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是椭圆16x2+25y2=1600上一点,且在x轴上方,F1,F2分别为椭圆的左、右焦点,直线PF2的斜率为-4
3
,则△PF1F2的面积为(  )
A.32
3
B.24
3
C.32
2
D.24
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1(-1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明
|PQ|
|PM|
+
|PQ|
|PN|
为定值,并求这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1,F2是椭圆
x2
16
+
y2
9
=1
的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的顶点为A1,A2,B1,B2,焦点为F1,F2,|A1B2|=
7
S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线m过Q(1,1),且与椭圆相交于M,N两点,当Q是MN的中点时,求直线m的方程.
(Ⅲ)设n为过原点的直线,l是与n垂直相交于P点且与椭圆相交于两点A,B的直线,|
OP
|=1
,是否存在上述直线l使以AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案