精英家教网 > 高中数学 > 题目详情
由9个互不相等的正数组成的矩阵中,每行中的三个数成等差数列,且a11+a12+a13、a21+a22+a23、a31+a32+a33成等比数列,下列四个判断正确的有( )
①第2列a12,a22,a32必成等比数列;       
②第1列a11,a21,a31不一定成等比数列;
③a12+a32>a21+a23
④若9个数之和等于9,则a22<1.
A.4个
B.3个
C.2个
D.1个
【答案】分析:先由题意设列出由9个正数组成的矩阵是:,由a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,则有:(b+m)2=(a+d)(c+n),得出①正确;再由(a+d)+(c+n)≥2 =2(b+m),得到③④正确;再根据题设列举出由9个正数组成的特殊矩阵判断②正确即可.
解答:解:由题意设由9个正数组成的矩阵是:,由a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列
则有:(b+m)2=(a+d)(c+n),故①正确;
(a+d)+(c+n)≥2 =2(b+m),故③正确;
再题意设由9个正数组成的矩阵是:,故②正确;
对于④,若9个数之和等于9,即3(a+d+b+m+c+n)=9,
∴b+m+a+d+c+n=3,
∴b+m=3-(a+d+c+n)≤3-2 =3-2(b+m),
∴b+m≤1,即a22≤1,故④正确;
其中正确的序号有①②③④.
故选A.
点评:本小题主要考查等比数列的性质、等差数列的性质、三阶矩阵等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•徐汇区一模)由9个互不相等的正数组成的矩阵
a11a12  a13
a21a22  a23
a31a32  a33
中,每行中的三个数成等差数列,且a11+a12+a13、a21+a22+a23、a31+a32+a33成等比数列,下列四个判断正确的有(  )
①第2列a12,a22,a32必成等比数列;       
②第1列a11,a21,a31不一定成等比数列;
③a12+a32>a21+a23
④若9个数之和等于9,则a22<1.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市徐汇区高三第一学期学习能力诊断卷理科数学 题型:选择题

由9个互不相等的正数组成的矩阵中,每行中的三个数成等差数列,且成等比数列,下列四个判断正确的有……………………(    )

①第2列必成等比数列       ②第1列不一定成等比数列

                  ④若9个数之和等于9,则

(A)4个            (B)3个           (C)2个            (D)1个

 

 

查看答案和解析>>

同步练习册答案