精英家教网 > 高中数学 > 题目详情
平面ACD⊥平面α,B为AC的中点,AC=2,∠CBD=60°,P是α内的动点,且P到直线BD的距离为
3
,则△APC面积的最大值为(  )
A.2
3
B.
3
+
2
C.2D.
3

∵平面ACD⊥平面α,B为AC的中点,AC=2,∠CBD=60°,P是α内的动点,且P到直线BD的距离为
3

要求△APC面积的最大值,只需P到AC的距离的最大值,
显然当BP⊥AC时,P到AC的距离最大,如图
∴△APC面积的最大值:
1
2
×2×
3
=
3

故选:D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,已知圆锥的底面直径和母线长均为4,过OA上一点P作平面α,当OBα时平面a截圆锥所得的截口曲线为抛物线,设抛物线的焦点为F,若OP=1,则|PF|长为(  )
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1棱长为a,则点C1到平面A1BD的距离是(  )
A.
2
2
a
B.
3
3
a
C.
3
a
D.
2
3
3
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面α的一个法向量
n
=(-2,-2,1),点A(-1,3,0)在α内,则P(-2,1,4)到α的距离为(  )
A.10B.3C.
8
3
D.
10
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平行六面体ABCD=A1B1C1D1中,AB=1,AD=2,AA1=3.∠BAD=90°,∠BAA1=∠DAA1=60°
求AC1的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2.
(1)求证:A1C1⊥AB;
(2)求点B1到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=4,E、F、G分别是PC、PD、BC的中点.
(1)求证:PA平面EFG
(2)求三棱锥P-EFG的体积
(3)求点P到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱ABC-A1B1C1中,E是BC的中点,D是AA1上的一个动点,且
AD
DA1
=m
,若AE平面DB1C,则m的值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AD=
2
,AA1=2,如图,
(1)当点P在BB1上运动时(点P∈BB1,且异于B,B1)设PA∩BA1=M,PC∩BC1=N,求证:MN平面ABCD
(2)当点P是BB1的中点时,求异面直线PC与AD1所成角的正弦值.

查看答案和解析>>

同步练习册答案