【题目】已知函数.
(1)若函数存在不小于的极小值,求实数的取值范围;
(2)当时,若对,不等式恒成立,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)利用导数分析函数的单调性,求出函数的极值,然后令极值大于等于,解出不等式可得出实数的取值范围;
(2)构造函数,问题等价于,对实数进行分类讨论,分析函数在区间上的单调性,结合条件可得出实数的取值范围.
(1)函数的定义域为,.
当时,,函数在区间上单调递减,
此时,函数无极值;
当时,令,得,
又当时,;当时,.
所以,函数在时取得极小值,且极小值为.
令,即,得.
综上所述,实数的取值范围为;
(2)当时,问题等价于,
记,
由(1)知,在区间上单调递减,
所以在区间上单调递增,所以,
①当时,由可知,所以成立;
②当时,的导函数为恒成立,所以在区间上单调递增,
所以.
所以,函数在区间上单调递增,从而,命题成立.
③当时,显然在区间上单调递增,
记,则,当时,,
所以,函数在区间上为增函数,即当时,.
,,
所以在区间内,存在唯一的,使得,
且当时,,即当时,,不符合题意,舍去.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为,,,,,).
(1)求选取的市民年龄在内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天气预报说,在今后的三天中,每天下雨的概率都为.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:用表示下雨,从下列随机数表的第行第列的开始读取,直到读取了组数据,
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10
55 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24
据此估计,这三天中恰有两天下雨的概率近似为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某刻考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行偏差分析,决定从全班40位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如表:
(1)已知与之间具有线性相关关系,求关于的线性回归方程;
(2)若这次考试该班数学平均分为120分,物理平均分为92,试预测数学成绩126分的同学的物理成绩.
参考公式: ,
参考数据: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2,AC=BC,F 是AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=.
(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A﹣CFD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写出下列命题的否定,并判断所得命题的真假:
(1)二次函数的图像的顶点坐标是;
(2)正数的立方根都是正数;
(3)存在一个最大的内角小于60°的三角形;
(4)对任意实数t,点都在一次函数的图像上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com