分析 利用半角公式、正切函数二倍角公式、同角三角函数关系式求解即可得答案.
解答 解:∵cos2α=$\frac{1}{3}$,
∴tan2α=$\frac{1-cos2α}{1+cos2α}$=$\frac{1-\frac{1}{3}}{1+\frac{1}{3}}$=$\frac{1}{2}$,
∴$\frac{tan2α}{tanα}$=$\frac{\frac{2tanα}{1-ta{n}^{2}α}}{tanα}$=$\frac{2}{1-ta{n}^{2}α}$=$\frac{2}{1-\frac{1}{2}}=4$.
故答案为:4.
点评 本题考查三角函数值的求法,解题时要注意半角公式、正切函数二倍角公式、同角三角函数关系式的合理运用,是基础题.
科目:高中数学 来源: 题型:选择题
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
A. | (4,5.5) | B. | (4,5) | C. | (5,5) | D. | (6,7) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 24+$\sqrt{3}$ | B. | 24+2$\sqrt{3}$ | C. | 14$\sqrt{3}$ | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,+∞) | B. | (-2,-1) | C. | (-1,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{11}{24}$ | B. | $\frac{175}{132}$ | C. | $\frac{175}{264}$ | D. | $\frac{17}{24}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com