精英家教网 > 高中数学 > 题目详情
设双曲线
x2
a2
-
y2
b2
=1(a,b>0)
的离心率e=2,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2) 满足(  )
分析:由根与系数的关系结合两点间的距离公式,算出|OP|=
x12+x22
=
(-
b
a
)
2
+
2c
a
.由双曲线的离心率为2,算出c=2a且b=
3
a,可得|OP|=
7
,因此点P必在圆x2+y2=2外,可得答案.
解答:解:∵方程ax2+bx-c=0的两个实根分别为x1和x2
∴x1+x2=-
b
a
,x1x2=-
c
a

可得|OP|=
x12+x22
=
(x1+x2)2-2x1x2
=
(-
b
a
)2+
2c
a

又∵双曲线的离心率为e=
c
a
=2,可得c=2a,
∴c2=4a2=a2+b2,即3a2=b2,结合a>0且b>0,得b=
3
a.
∵圆的方程为x2+y2=2,∴圆心坐标为O(0,0),半径r=
2

因此,|OP|=
(-
b
a
)2+
2c
a
=
7
2
,所以点P必在圆x2+y2=2外.
故选:B
点评:本题着重考查了一元二次方程根与系数的关系、双曲线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为(  )
A、
5
4
B、5
C、
5
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线方程;
(2)直线y=kx+5(k≠0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是离心率为
5
的双曲线
x2
a2
-
y 2
b2
=1(a>0,b>0)
的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点)且|PF1|=λ|PF2|则λ的值为(  )
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的虚轴长为2,焦距为2
5
,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的虚轴长为2,焦距为2
3
,则双曲线的渐近线方程为(  )

查看答案和解析>>

同步练习册答案