精英家教网 > 高中数学 > 题目详情
(2012•大连二模)已知向量
a
b
满足
a
=(-2sinx,
3
cosx+
3
sinx),
b
=(cosx,cosx-sinx),函数,f(x)=
a
b
(x∈R).
(I)将f(x)化成Asin((ωx+φ)(A>0,ω>0,|φ|<π的形式;
(Ⅱ)已知数列an=
n
2
 
f(
2
-
11π
24
)(n∈N*)
,求{an}的前2n项和S2n
分析:(I)根据向量数量积的坐标运算公式,结合三角恒等变换公式化简整理,即可得到f(x)=2sin(2x+
3
)

(II)由(I)的结论,得an=2n2sin(nπ-
π
4
)
,根据三角函数的周期,可得n为奇数时sin(nπ-
π
4
)=
2
2
;n为偶数时sin(nπ-
π
4
)=-
2
2
,因此S2n=
2
[12-22+32-42+…+(2n-1)2-(2n)2]
,结合等差数列的通项与求和公式,即可算出S2n的表达式.
解答:解(Ⅰ)∵
a
=(-2sinx,
3
cosx+
3
sinx),
b
=(cosx,cosx-sinx),
f(x)=
a
b
=-2sinxcosx+
3
(cos2x-sin2x)
=-sin2x+
3
cos2x=2sin(2x+
3
)
…(4分)
(Ⅱ)an=n2f(
2
-
11π
24
)=2n2sin(nπ-
π
4
)
…(6分)
∵t=sin(nπ-
π
4
)的最小正周期为T=
π
=2
∴n为奇数时,t=sin(nπ-
π
4
)=
2
2
;n为偶数时t=sin(nπ-
π
4
)=-
2
2

因此,
S2n=
2
[12-22+32-42+…+(2n-1)2-(2n)2]
…(8分)
又(2n-1)2-(2n)2=-4n+1…(10分)
所以S2n=2[12×(
2
2
)+22×(-
2
2
)+32×(
2
2
)+42×(-
2
2
)+…+(2n)2×(-
2
2
)]

=
2
[12-22+32-42+…+(2n-1)2-(2n)2]

=
2
[-1-2-3-4-…-(2n-1)-2n]

=
2
×
2n(-1-2n)
2
=-
2
n-2
2
n2
…(12分)
点评:本题给出向量含有三角函数式的坐标,求函数f(x)的表达式并依此求数列的前n项之和.着重考查了三角恒等变换、等差数列的通项与求和等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•大连二模)已知程序框图如图所示,则输出的s为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)已知全集U=Z,集合A={x∈U|
3
x+1
≤1),则?uA=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)复数z满足z•i=1+i(i是虚数单位),则|z|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)若sinα+cosα=
1-
3
2
,α∈(0,π),则tanα
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)x,y的取值如表,从散点图分析,y与x线性相关,且回归方程为
y
=3.5x-1.3
,则m=(  )
x 1 2 3 4 5
y 2 7 8 12 m

查看答案和解析>>

同步练习册答案