【题目】在平面直角坐标系中,点为椭圆:的右焦点,过的直线与椭圆交于、两点,线段的中点为.
(1)求椭圆的方程;
(2)若直线、斜率的乘积为,两直线,分别与椭圆交于、、、四点,求四边形的面积.
【答案】(1);(2).
【解析】
(1)设,,,,利用点差法求出直线的斜率为:,又直线的斜率为:,所以,得到,再结合,,即可求出,,的值,从而求得椭圆的方程;
(2)设点,,,,由题意可知,当直线的斜率不存在时,易求四边形的面积,当直线的斜率存在时,设直线的方程为:,与椭圆方程联立,利用韦达定理代入得,再由弦长公式和点到直线距离公式求得,由椭圆的对称性可知:四边形的面积为,从而得到边形的面积为.
(1)由题意可知,,设,,∴,,
又∵点,在椭圆上,∴,两式相减得:,
∴,即直线的斜率为:,
又∵直线过右焦点,过点,∴直线的斜率为:,
∴,∴,又∵,,∴,,∴椭圆的方程为:;
(2)设点,,
由题意可知,,即,①当直线的斜率不存在时,显然,,
∴,又,∴,,
∴四边形的面积,
②当直线的斜率存在时,设直线的方程为:,
联立方程,消去得:,
∴,,
∴,
∵,∴,
整理得:,
由弦长公式得:,
原点(0,0)到直线的距离,
∴,
由椭圆的对称性可知:四边形的面积为,
综上所述,四边形的面积为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,椭圆上的点到左焦点的距离的最大值为.
(1)求椭圆的标准方程;
(2)已知直线与椭圆交于、两点.在轴上是否存在点,使得且,若存在,求出实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人进行围棋比赛,比赛要求双方下满五盘棋,开始时甲每盘棋赢的概率为,由于心态不稳,甲一旦输一盘棋,他随后每盘棋赢的概率就变为.假设比赛没有和棋,且已知前两盘棋都是甲赢.
(Ⅰ)求第四盘棋甲赢的概率;
(Ⅱ)求比赛结束时,甲恰好赢三盘棋的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点为椭圆:的右焦点,过的直线与椭圆交于、两点,线段的中点为.
(1)求椭圆的方程;
(2)若直线、斜率的乘积为,两直线,分别与椭圆交于、、、四点,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆,如图,C1,C2分别交x轴正半轴于点E,A.射线OD分别交C1,C2于点B,D,动点P满足直线BP与y轴垂直,直线DP与x轴垂直.
(1)求动点P的轨迹C的方程;
(2)过点E作直线l交曲线C与点M,N,射线OH⊥l与点H,且交曲线C于点Q.问:的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与函数()的图象相交,将其中三个相邻交点从左到右依次记为A,B,C,且满足有下列结论:
①n的值可能为2
②当,且时,的图象可能关于直线对称
③当时,有且仅有一个实数ω,使得在上单调递增;
④不等式恒成立
其中所有正确结论的编号为( )
A.③B.①②C.②④D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com