3£®ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2asin¦È £¨a£¾0£©£®ÒÔ¼«µãΪ×ø±êÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÉèÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÔ²CµÄ±ê×¼·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÔ²C½»ÓÚA£¬BÁ½µã£¬ÇÒ$|{AB}|¡Ý\sqrt{3}a$£®ÇóʵÊýaµÄÈ¡Öµ·¶Î§£¿

·ÖÎö £¨¢ñ£©ÀûÓü«×ø±ê·½³Ì½øÐÐת»¯¼´¿ÉÇóÔ²CµÄ±ê×¼·½³Ì£¬ÏûÈ¥²ÎÊý¼´¿ÉÇóÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÀûÓÃÖ±ÏߺÍÔ²ÏཻµÄÏÒ³¤¹«Ê½½øÐÐת»¯Çó½â¼´¿É£®

½â´ð ½â£º£¨¢ñ£©¡ß¦Ñ=2asin¦È £¨a£¾0£©£®
¡à¦Ñ2=2a¦Ñsin¦È£¬
¼´x2+y2=2ay£¬¼´x2+£¨y-a£©2=a2£¬£¨a£¾0£©£®
ÔòÔ²CµÄ±ê×¼·½³ÌΪx2+£¨y-a£©2=a2£¬£¨a£¾0£©£®
ÓÉ$\left\{{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}}\right.$£¬ÏûÈ¥²ÎÊýtµÃ4x-3y+5=0£¬
¼´Ö±ÏßlµÄÆÕͨ·½³ÌΪ4x-3y+5=0£»
£¨¢ò£©ÓÉÔ²µÄ·½³ÌµÃÔ²ÐÄC£¨0£¬a£©£¬°ë¾¶R=a£¬
ÔòÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|5-3a|}{\sqrt{{3}^{2}+{4}^{2}}}=\frac{|5-3a|}{5}$£¬
¡ß$|{AB}|¡Ý\sqrt{3}a$£®
¡à2$\sqrt{{a}^{2}-{d}^{2}}$¡Ý$\sqrt{3}$a£¬
¼´a2-d2¡Ý$\frac{3}{4}$a2£¬
Ôòd2¡Ü$\frac{{a}^{2}}{4}$£¬
¼´d¡Ü$\frac{a}{2}$£¬
Ôò$\frac{|5-3a|}{5}$¡Ü$\frac{a}{2}$£¬
Ôò-$\frac{a}{2}$¡Ü$\frac{3a-5}{5}$¡Ü$\frac{a}{2}$£¬
ÓÉ$\left\{\begin{array}{l}{-\frac{a}{2}¡Ü\frac{3a-5}{5}}\\{\frac{3a-5}{5}¡Ü\frac{a}{2}}\end{array}\right.$µÃ$\left\{\begin{array}{l}{a¡Ý\frac{10}{11}}\\{a¡Ü10}\end{array}\right.$µÃ$\frac{10}{11}$¡Üa¡Ü10£®
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ$\frac{10}{11}$¡Üa¡Ü10£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é²ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄ¹Øϵ£¬ÒÔ¼°Ö±ÏߺÍÔ²ÏཻµÄÏÒ³¤¹«Ê½µÄÓ¦Ó㬿¼²éѧÉúµÄת»¯ÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÈçͼÒÑÖªËÄÀâ׶P-ABCDµÄµ×ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬PD¡Íµ×ÃæABCD£¬E£¬F·Ö±ðΪÀâBC¡¢ADµÄÖеã
£¨1£©ÈôPD=1£¬ÇóÒìÃæÖ±ÏßPBºÍDEËù³É½ÇµÄÓàÏÒÖµ£»
£¨2£©ÈôËÄÀâ׶P-ABCDµÄÌå»ýΪ$\frac{8}{3}$£¬ÇóËÄÀâ׶P-ABCDÈ«Ãæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªf£¨¦Á£©=$\frac{cos£¨¦Ð-¦Á£©sin£¨\frac{3}{2}¦Ð+¦Á£©}{cos¦Á}$£®
£¨1£©Èô¦ÁΪµÚ¶þÏóÏÞ½ÇÇÒf£¨¦Á£©=-$\frac{3}{5}$£¬Çó$\frac{sin2¦Á+cos2¦Á+1}{1+tan¦Á}$µÄÖµ£»
£¨2£©Èô5f£¨¦Á£©=4f£¨3¦Á+2¦Â£©£®ÊÔÎÊtan£¨2¦Á+¦Â£©•tan£¨¦Á+¦Â£©ÊÇ·ñΪ¶¨Öµ£¨ÆäÖЦÁ¡Ùk¦Ð+$\frac{¦Ð}{2}$£¬¦Á+¦Â¡Ùk¦Ð+$\frac{¦Ð}{2}$£¬2¦Á+¦Â¡Ùk¦Ð+$\frac{¦Ð}{2}$£¬3¦Á+2¦Â¡Ùk¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£©£¿ÈôÊÇ£¬ÇëÇó³ö¶¨Öµ£»·ñÔò£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª2£¬´ÖÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼÔò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®6¦ÐB£®7¦ÐC£®12¦ÐD£®14¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{16}{3}$B£®32C£®$\frac{32}{3}$D£®$\frac{64}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçÏ£¬Ôò¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®2$\sqrt{5}$+2$\sqrt{2}$B£®6+2$\sqrt{3}$+2$\sqrt{2}$C£®2+2$\sqrt{5}$+2$\sqrt{2}$D£®6+2$\sqrt{5}$+2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨1-2m£©x-3m£¬x£¼1}\\{lo{g}_{m}x£¬x¡Ý1}\end{array}$£¬ÆäÖÐm¡Ê[$\frac{1}{5}$£¬$\frac{1}{2}$£©£¬Èôa=f£¨-$\frac{3}{2}$£©£¬b=f£¨1£©£¬c=f£¨2£©£¬Ôò£¨¡¡¡¡£©
A£®a£¼c£¼bB£®a£¼b£¼cC£®b£¼a£¼cD£®c£¼b£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚËÄÀâ׶P-ABCDÖУ¬PA¡ÍƽÃæABCD£¬ËıßÐÎABCDΪÕý·½ÐΣ¬µãM£¬N·Ö±ðΪÏ߶ÎPB£¬PCÉϵĵ㣬MN¡ÍPB£®
£¨¢ñ£©ÇóÖ¤£ºBC¡ÍƽÃæPAB£»
£¨¢ò£©µ±PA=AB=2£¬¶þÃæ½ÇC-AN-D´óСΪΪ$\frac{¦Ð}{3}$ʱ£¬ÇóPNµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¬x¡Ý4}\\{f£¨x+2£©£¬x£¼4}\end{array}\right.$£¬Ôòf£¨2+log23£©µÄֵΪ£¨¡¡¡¡£©
A£®6B£®24C£®36D£®48

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸