精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.

(1)若曲线的参数方程为为参数),求曲线的直角坐标方程和曲线的普通方程;

(2)若曲线的参数方程为为参数),,且曲线与曲线的交点分别为,求的取值范围.

【答案】(1)曲线的直角坐标方程为:

曲线的普通方程为:.

(2)

【解析】

分析第一问首先应用极坐标与平面直角坐标的转换关系,求得曲线的直角坐标方程,

之后对曲线的参数方程进行消参,求得其普通方程;第二问将曲线的参数方程代入的方程,得到关于的关系式,利用韦达定理求得两个和与两根积的值,之后应用参数的几何意义以及题中所求得的范围,最后借助于对三角函数值域的求解求得结果.

详解:(1)

曲线的直角坐标方程为:

曲线的普通方程为:

(2)将的参数方程:代入的方程:得:

的几何意义可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业2018年招聘员工,其中五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:

岗位

男性

应聘人数

男性

录用人数

男性

录用比例

女性

应聘人数

女性

录用人数

女性

录用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

总计

533

264

467

169

(1)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;

(2)从应聘岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;

(3)表中各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对两个品牌的共享单车在编号分别为的五个城市的用户人数(单位:十万)进行统计,得到数据如下:

城市

品牌

1

2

3

4

5

A品牌

3

4

12

6

8

B品牌

4

3

7

9

5

(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有85%的把握认为“优城”和共享单车品牌有关?

(Ⅱ)若不考虑其它因素,为了拓展市场,对A品牌要从这五个城市选择三个城市进行宣传,

(ⅰ)求城市2被选中的概率;

(ⅱ)求在城市2被选中的条件下城市3也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两班本次考试数学分数如下列茎叶图所示:

(I)根据基叶图求甲、乙两班同学数学分数的中位数,并将乙班同学的分数的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较在一模考试中,甲、乙两班同学数学分数的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可)

(Ⅲ)若规定分数在的成绩为良好,分数在的成绩为优秀,现从甲、乙两班成绩为优秀的同学中,按照各班成绩为优秀的同学人数占两班总的优秀人数的比例分层抽样,共选出12位同学参加数学提优培训,求这12位同学中恰含甲、乙两班所有140分以上的同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下给出了4个命题:

1)两个长度相等的向量一定相等;

2)相等的向量起点必相同;

3)若,且,则

4)若向量的模小于的模,则

其中正确命题的个数共有(

A.3 B.2 C.1 D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列与等比数列是非常数的实数列,设.

(1)请举出一对数列,使集合中有三个元素;

(2)问集合中最多有多少个元素?并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图像与轴无交点,求的取值范围;

(2)若方程在区间上存在实根,求的取值范围;

(3)设函数,当时若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过点,左、右焦点分别是点在椭圆上,且满足点只有两个.

(Ⅰ)求椭圆的方程;

(Ⅱ)过且不垂直于坐标轴的直线交椭圆两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.

查看答案和解析>>

同步练习册答案