¹ØÓÚÊýÁÐÓÐÏÂÁÐÃüÌ⣺
£¨1£©ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒSn=an-1£¨a¡ÊR£©£¬Ôò{an}ΪµÈ²î»òµÈ±ÈÊýÁУ»
£¨2£©ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÇÒ¹«²î²»ÎªÁ㣬ÔòÊýÁÐ{an}Öв»»áÓÐam=an£¨m¡Ùn£©£¬
£¨3£©Ò»¸öµÈ²îÊýÁÐ{an}ÖУ¬Èô´æÔÚak+1£¾ak£¾0£¨k¡ÊN*£©£¬Ôò¶ÔÓÚÈÎÒâ×ÔÈ»Êýn£¾k£¬¶¼ÓÐan£¾0£»
£¨4£©Ò»¸öµÈ±ÈÊýÁÐ{an}ÖУ¬Èô´æÔÚ×ÔÈ»Êýk£¬Ê¹ak•ak+1£¼0£¬Ôò¶ÔÓÚÈÎÒân¡ÊN*£¬¶¼ÓÐan•an+1£¼0£¬
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©£¬µ±a=0ʱ£¬a1=-1£¬a2=a3=¡­=0£¬ÓÉ´Ë¿ÉÅжϣ¨1£©£»
£¨2£©£¬ÀûÓ÷´Ö¤·¨¿ÉÅжϣ¨2£©ÕýÈ·£»
£¨3£©£¬ÒÀÌâÒ⣬¿ÉµÃ¹«²îd£¾0£¬´Ó¶ø¿ÉÅжϣ¨3£©ÕýÈ·£»
£¨4£©£¬¸öµÈ±ÈÊýÁÐ{an}ÖУ¬ak•ak+1£¼0£¬¿ÉÖª¹«±Èq£¼0£¬´Ó¶ø¿ÉÅжϣ¨4£©ÕýÈ·£®
½â´ð£º ½â£º¶ÔÓÚ£¨1£©£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒSn=an-1£¨a¡ÊR£©£¬
µ±a=0ʱ£¬a1=-1£¬a2=a3=¡­=0£¬{an}¼È²»ÊǵȲîÓÖ²»ÊǵȱÈÊýÁУ¬¹Ê£¨1£©´íÎó£»
¶ÔÓÚ£¨2£©£¬ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÇÒ¹«²î²»ÎªÁ㣬ÔòÊýÁÐ{an}Öв»»áÓÐam=an£¨m¡Ùn£©£¬
¼ÙÉèam=an£¨m¡Ùn£©£¬Ôòa1+£¨m-1£©d=a1+£¨n-1£©d£¬ÕûÀí¿ÉµÃm=n£¬ÕâÓëm¡Ùnì¶Ü£¬
¹Ê¼ÙÉè²»³ÉÁ¢£¬Ô­ÃüÌâÕýÈ·£¬¼´£¨2£©ÕýÈ·£»
¶ÔÓÚ£¨3£©£¬Ò»¸öµÈ²îÊýÁÐ{an}ÖУ¬Èô´æÔÚak+1£¾ak£¾0£¨k¡ÊN*£©£¬ÓÉak+1=ak+dÖªak+d£¾ak£¾0£¬¹Êd£¾0£¬
ËùÒÔ£¬¶ÔÓÚÈÎÒâ×ÔÈ»Êýn£¾k£¬¶¼ÓÐan£¾0£¬£¨3£©ÕýÈ·£»
¶ÔÓÚ£¨4£©£¬Ò»¸öµÈ±ÈÊýÁÐ{an}ÖУ¬Èô´æÔÚ×ÔÈ»Êýk£¬Ê¹ak•ak+1£¼0£¬Ôòqak2£¼0£¬¼´q£¼0£¬
Ôò¶ÔÓÚÈÎÒân¡ÊN*£¬¶¼ÓÐan•an+1=qan2£¼0£¬ÕýÈ·£®
×ÛÉÏËùÊö£¬ÕýÈ·ÃüÌâµÄÐòºÅÊǢڢۢܣ®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Óã¬×ÅÖØ¿¼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеĸÅÄͨÏʽ¼°ÐÔÖʵÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax3+bx2-9x£¨a¡Ù0£©£¬µ±x=-1ʱf£¨x£©È¡µÃ¼«Öµ5£®
£¨¢ñ£©Çóf£¨x£©µÄ¼«Ð¡Öµ£»
£¨¢ò£©¶ÔÈÎÒâx1£¬x2¡Ê£¨-3£¬3£©£¬Åжϲ»µÈʽ|f£¨x1£©-f£¨x2£©|£¼32ÊÇ·ñÄܺã³ÉÁ¢£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2-kx-1£¬
£¨1£©Èôk=2£¬ÊÔÓö¨Òå·¨Ö¤Ã÷f£¨x£©ÔÚÇø¼ä[1£¬+¡Þ£©ÉÏΪÔöº¯Êý£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[1£¬4]ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Íø¸ñÖ½ÉÏÕý·½ÐÎС¸ñµÄ±ß³¤Îª1£¬Í¼ÖдÖÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåÌå»ýµÄ×îСֵµÈÓÚ£¨¡¡¡¡£©
A¡¢36
B¡¢
63
2
C¡¢18
D¡¢
45
4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2-mx+n£¬ÇÒf£¨1£©=-1£¬f£¨n£©=m£¬Ôòf£¨-5£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=
b
|x|-a
(a£¾0£¬b£¾0)
µÄͼÏóÐÎÈ纺×Ö¡°‡å¡±£¬¹Ê³ÆÆäΪ¡°‡åº¯Êý¡±£®¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢Ù¡°‡åº¯Êý¡±ÔÚÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£»      
¢Ú¡°‡åº¯Êý¡±µÄÖµÓòΪR£»
¢Û¡°‡åº¯Êý¡±ÓÐÁ½¸öÁãµã£»                 
¢Ü¡°‡åº¯Êý¡±µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£»
¢Ý¡°‡åº¯Êý¡±µÄͼÏóÓëÖ±Ïßy=kx+m£¨k¡Ù0£©ÖÁÉÙÓÐÒ»¸ö½»µã£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£º
 
£®£¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Âú×ãSn=an+1-2n+1+1£¬£¨n¡ÊN*£©£¬ÇÒa1=1£®
Ö¤Ã÷£ºÊýÁÐ{
an
2n-1
}
ΪµÈ²îÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}µÄͨÏʽan=
1
n+1
+
n
£¬ËüµÄÇ°nÏîºÍΪSn=9£¬Ôòn=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ²îÊýÁÐ{an}Âú×ãa3=5£¬a10=-9
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÉèSnÊÇÊýÁеÄÇ°nÏîºÍ£¬ÇóSnµÄ×î´óÖµ¼°µ±Ê±nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸