【题目】已知圆C:(x﹣1)2+(y﹣1)2=2经过椭圆Γ: + =1(a>b>0)的右焦点F和上顶点B.
(1)求椭圆Γ的方程;
(2)过原点O的射线l与椭圆Γ在第一象限的交点为Q,与圆C的交点为P,M为OP的中点,求 的最大值.
【答案】
(1)解:在圆C:(x﹣1)2+(y﹣1)2=2中,
令y=0,得F(2,0),即c=2,
令x=0,得B(0,2),即b=2,
∴a2=b2+c2=8,
∴椭圆Γ的方程为: .
(2)解:设点Q(x0,y0),x0>0,y0>0,
则
=
=(1,1)(x0,y0)
=x0+y0,
又 ,
设b=x0+y0,与 联立,得:
,
令△≥0,得16b2﹣12(12b2﹣8)≥0,
解得﹣2 .
又点Q(x0,y0)在第一象限,
∴当 时, 取最大值2 .
【解析】(1)在圆(x﹣1)2+(y﹣1)2=2中,令y=0,得F(2,0),令x=0,得B(0,2),由此能求出椭圆方程.(2)设点Q(x0 , y0),x0>0,y0>0,则 = =x0+y0 , 又 ,设b=x0+y0 , 与 联立,得: ,由此能求出 的最大值.
科目:高中数学 来源: 题型:
【题目】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过对某城市一天内单次租用共享自行车的时间分钟到钟的人进行统计,按照租车时间, , , , 分组做出频率分布直方图,并作出租用时间和茎叶图(图中仅列出了时间在, 的数据).
(1)求的频率分布直方图中的;
(2)从租用时间在分钟以上(含分钟)的人数中随机抽取人,设随机变量表示所抽取的人租用时间在内的人数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<﹣1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举行“青少年禁毒”知识竞赛网上答题,高二年级共有500名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了100名学生的成绩进行统计.请你解答下列问题:
(1)根据下面的频率分布表和频率分布直方图,求出a+d和b+c的值;
(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人?
分组 | 频数 | 频率 |
[60,70) | 10 | 0.1 |
[70,80) | 22 | 0.22 |
[80,90) | a | 0.38 |
[90,100] | 30 | c |
合计 | 100 | d |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com