精英家教网 > 高中数学 > 题目详情
如图,设T是直线x=-1,x=2与函数y=x2的图象在x轴上方围成的直角梯形区域,S是T内函数y=x2图象下方的点构成的区域(图中阴影部分).向T中随机投一点,则该点落入S中的概率为( )

A.
B.
C.
D.
【答案】分析:本题利用几何概型求解.欲求恰好落在阴影范围内的概率,只须求出阴影范围内的面积与梯形的面积比即可.
解答:解:∵梯形的面积为=
阴影部分的面积为:
S=
∴落在阴影范围内的概率
P==
故选B
点评:本题主要考查了几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设T是直线x=-1,x=2与函数y=x2的图象在x轴上方围成的直角梯形区域,S是T内函数y=x2图象下方的点构成的区域(图中阴影部分).向T中随机投一点,则该点落入S中的概率为(  )
A、
1
5
B、
2
5
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,其长轴长与短轴长的和等于6.
(1)求椭圆E的方程;
(2)如图,设椭圆E的上、下顶点分别为A1、A2,P是椭圆上异于A1、A2的任意一点,直线PA1、PA2分别交x轴于点N、M,若直线OT与过点M、N的圆G相切,切点为T.证明:线段OT的长为定值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省、金陵中学、南京外国语学校高三三校联考数学卷 题型:解答题

A.选修4-1:几何证明选讲

 

 
(本小题满分10分)

如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.求证:(1)l是⊙O的切线;(2)PB平分∠ABD.

B.选修4-2:矩阵与变换

(本小题满分10分)

已知点A在变换:T:→=作用后,再绕原点逆时针旋转90°,得到点B.若点B坐标为(-3,4),求点A的坐标.

C.选修4-4:坐标系与参数方程

(本小题满分10分)

求曲线C1:被直线l:y=x-所截得的线段长.

D.选修4-5:不等式选讲

(本小题满分10分)

已知a、b、c是正实数,求证:≥.

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,设T是直线x=-1,x=2与函数y=x2的图象在x轴上方围成的直角梯形区域,S是T内函数y=x2图象下方的点构成的区域(图中阴影部分).向T中随机投一点,则该点落入S中的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

同步练习册答案