(本题满分16分,第1小题4分,第2小题6分,第3小题6分)
设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为的直角三角形.过B1作直线l交椭圆于P、Q两点.
(1) 求该椭圆的标准方程;
(2) 若,求直线l的方程;
(3) 设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈,求△B2PQ的面积的取值范围.
(1);(2)x+2y+2=0和x–2y+2=0;(3)。
【解析】
试题分析:(1)设所求椭圆的标准方程为,右焦点为.
因△AB1B2是直角三角形,又|AB1|=|AB2|,故∠B1AB2=90º,得c=2b…………1分
在Rt△AB1B2中,,从而.………………3分
因此所求椭圆的标准方程为: …………………………………………4分
(2)由(1)知,由题意知直线的倾斜角不为0,故可设直线的方程为:,代入椭圆方程得,…………………………6分
设P(x1, y1)、Q(x2, y2),则y1、y2是上面方程的两根,因此,
,又,所以
………………………………8分
由,得=0,即,解得;
所以满足条件的直线有两条,其方程分别为:x+2y+2=0和x–2y+2=0……………………10分
(3) 当斜率不存在时,直线,此时,………………11分
当斜率存在时,设直线,则圆心到直线的距离,
因此t=,得………………………………………13分
联立方程组:得,由韦达定理知,
,所以,
因此.
设,所以,所以…15分
综上所述:△B2PQ的面积……………………………………………16分
考点:椭圆的简单性质;圆的简单性质;直线与椭圆的综合应用。
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
科目:高中数学 来源: 题型:
(本题满分16分,第一小题8分;第二小题8分)
已知是轴正方向的单位向量,设=, =,且满足.
求点的轨迹方程;
过点的直线交上述轨迹于两点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市高三第三次月考试题文科数学 题型:解答题
. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
已知公差大于零的等差数列的前项和为,且满足,,
(1)求数列的通项公式;
(2)若数列是等差数列,且,求非零常数;
(3)若(2)中的的前项和为,求证:.
查看答案和解析>>
科目:高中数学 来源:上海市长宁区2010届高三第二次模拟考试数学文 题型:解答题
(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义在上的偶函数,当时,且函数图象关于直线对称,求证:,并求时的解析式;
(3)在(2)的条件下,不等式在上恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(理) 题型:解答题
(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于).
(1) 若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程;
(2) 若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3) 对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分16分,第一小题8分;第二小题8分)
已知是轴正方向的单位向量,设=, =,且满足.
(1) 求点的轨迹方程;
(2) 过点的直线交上述轨迹于两点,且,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com