精英家教网 > 高中数学 > 题目详情
动点到定点与到定直线,的距离之比为
(1)求的轨迹方程;
(2)过点的直线(与x轴不重合)与(1)中轨迹交于两点.探究是否存在一定点E(t,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等?若存在,求出t的值;若不存在,说明理由.
(1) ;(2)2

试题分析:(1)动点到定点与到定直线,的距离之比为 .根据两点的距离即点到直线的距离公式,即可求出结论.
(2)根据题意假设直线方程联立椭圆方程消去y,得到一个关于x的二次方程,写出韦达定理得到M,N的坐标的关系式.因为题意要求x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等,所以满足.结合韦达定理,即可得到结论.
试题解析:(1)由题意得, ,
化简得,,即,即点的轨迹方程
(2)若存在点E(t,0)满足题设条件.并设M(x1,y1)、N(x2,y2),
⊥x轴时,由椭圆的对称性可知,x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等
与x轴不垂直时,设直线l的方程为y=k(x-1)(k≠0).
,得
所以
根据题意,x轴平分∠MEN,则直线ME、NE的倾斜角互补,即KME+KNE=0.
设E(t,0),则有(当x1=t或x2=t时不合题意)
又k≠0,所以,将y1=k(x1-1),y2=k(x2-1)代入上式,得
又k≠0,所以,即
,将代入,解得t=2.
综上,存在定点E(2,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点.若直线PF2与圆(x+1)2+(y-)2=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1,当k变化时,此直线被椭圆+y2=1截得的最大弦长是(  )
A.4B.
C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线C上的动点M(x,y),向量a=(x+2,y)和b=(x-2,y)满足|a|+|b|=6,则曲线C的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆Γ=1(ab>0)右焦点F2的直线交椭圆于AB两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.
(1)求椭圆Γ的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点PQ,且?若存在,求出该圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,已知椭圆C:+y2=1,在椭圆C上任取不同两点A,B,点A关于x轴的对称点为A′,当A,B变化时,如果直线AB经过x轴上的定点T(1,0),则直线A′B经过x轴上的定点为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1, F2是椭圆x2+2y2=6的两个焦点,点M在此椭圆上且∠F1MF2=60°,则△MF1F2的面积等于(  )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点在椭圆+=1上,若A点的坐标为(3,0),,且,则的最小值为________。

查看答案和解析>>

同步练习册答案