精英家教网 > 高中数学 > 题目详情
(2013•梅州一模)在2012年8月15日那天,某物价部门对本市的5家商场的某商品的一天销售量价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:
价格x 9 905 M 10.5 11
销售量y 11 N 8 6 5
由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归直线方程是:
y
=-3.2x+40
,且m+n=20,则其中的n=
10
10
分析:先求出横标和纵标的平均数,把所求的平均数代入方程中,得出m,n的关系式,题目中给出m+n=20,只要代入求解即可得到结果.
解答:解:
.
x
=
1
5
(9+9.5+m+10.5+11)=
1
5
(40+m),
.
y
=
1
5
(11+n+8+6+5)=
1
5
(30+n)
∵其线性回归直线方程是:
y
=-3.2x+40

1
5
(30+n)=-3.2×
1
5
(40+m)+40,
即30+n=-3.2(40+m)+200,又m+n=20,
解得m=n=10
故答案为:10.
点评:本题考查线性回归方程的应用,是一个运算量比较小的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,不然会前功尽弃.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•梅州一模)设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的8高调函数,那么实数a的取值范围是
[-
2
2
]
[-
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)设等比数列{an}的公比q=2,前n项和为Sn,则
S4
a2
=
15
2
15
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)已知双曲线
x2
a2
-
y2
b2
 =1(a>b>0)
的两条渐近线的夹角为
π
3
,则双曲线的离心率为
2
3
3
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)某工厂在试验阶段大量生产一种零件,这种零件有甲、乙两项技术指标需要检测,设各项技术指标达标与否互不影响,按质量检验规定:两项技术指标都达标的零件为合格品,为估计各项技术的达标概率,现从中抽取1000个零件进行检验,发现两项技术指标都达标的有600个,而甲项技术指标不达标的有250个.
(1)求一个零件经过检测不为合格品的概率及乙项技术指标达标的概率;
(2)任意抽取该零件3个,求至少有一个合格品的概率;
(3)任意抽取该种零件4个,设ξ表示其中合格品的个数,求随机变量ξ的分布列.

查看答案和解析>>

同步练习册答案