精英家教网 > 高中数学 > 题目详情

【题目】已知数列 的前 项和为 ,并且满足 .

(1)求数列 通项公式;

(2)设 为数列 的前 项和,求证: .

【答案】(1) (2)见解析

【解析】试题分析:(1)根据题意得到 ,两式做差得到;(2)根据第一问得到,由错位相减法得到前n项和,进而可证和小于1.

解析:

(1)∵

时,

时, ,即

∴数列 时以 为首项, 为公差的等差数列.

.

(2)∵

由① ②得

点睛:这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.

型】解答
束】
22

【题目】已知 分别是椭圆 )的左、右焦点, 是椭圆 上的一点,且 ,椭圆 的离心率为 .

(1)求椭圆 的标准方程;

(2)若直线 与椭圆 交于不同两点 ,椭圆 上存在点 ,使得以 为邻边的四边形 为平行四边形( 为坐标原点).

)求实数 的关系;

)证明:四边形 的面积为定值.

【答案】(1) (2)①② 四边形 的面积为定值,且定值为

【解析】试题分析:(1)根据题意得到 椭圆的标准方程为;(2)联立直线和椭圆方程得到二次方程,根据题意得到,由韦达定理得到P点坐标,再根据点在椭圆上得到参数值关系;(3先由弦长公式得到,由点线距得到三角形高度,再根据四边形面积公式,进而得到定值.

解析:

(1)依题意, ,即 .

,∴

故椭圆的标准方程为

(2)()由 .

,则 .

∵四边形 为平行四边形.

∴点 坐标为

∵点 在椭圆 上,

,整理得

)∵

又点 到直线 的距离为

∴四边形 的面积

故四边形 的面积为定值,且定值为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB为圆O的直径,C,D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.

(1)求证:AC是∠DAB的平分线;
(2)求证:OF∥AG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,有两种方式,甲为投资债券等稳健型产品,乙为投资股票等风险型产品,设投资甲、乙两种产品的年收益分别为万元,根据长期收益率市场预测,它们与投入资金万元的关系分别为,(其中都为常数),函数对应的曲线,如图所示

(1)求函数的解析式

(2)若该家庭现有万元资金,全部用于理财投资,问:如何分配资金能使一年的投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线 )的焦点为 ,已知点 为抛物线上的两个动点,且满足 .过弦 的中点 作抛物线准线的垂线 ,垂足为 ,则 的最大值为__________

【答案】1

【解析】,在三角形ABF中,用余弦定理得到

故最大值为1.

故答案为:1.

点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义。一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。

型】填空
束】
17

【题目】 的内角 所对的边分别为 ,且 .

(1)当 时,求 的值;

(2)当的面积为 时,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,.

(1)证明:面

(2)求点到平面的距离;

(3)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,过点A作⊙O的切线EP交CB的延长线于P,∠PAB=35°.

(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠PAB=35°,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线半径为2的圆相切圆心轴上且在直线的上方.

1)求圆的方程

2)过点的直线与圆交于两点轴上方),问在轴正半轴上是否存在定点使得轴平分若存在求出点的坐标若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为奇函数,为偶函数,且

函数的解析式;

用函数单调性的定义证明:函数上是减函数

关于的方程有解,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.

(1)求二面角A﹣PB﹣C的余弦值.
(2)在线段CP上是否存在一点E,使得DE⊥PB,若存在,求线段CE的长度,不存在,说明理由.

查看答案和解析>>

同步练习册答案